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Abstract

The technique of “extension” allows to build (n+1)-dimensional Hamil-
tonian systems with a non-trivial polynomial in the momenta first integral
of any given degree starting from a n-dimensional Hamiltonian satisfying
some additional properties. Until now, the application of the method was
restricted to integer values of a certain fundamental parameter determin-
ing the degree of the additional first integral. In this article we show how
this technique can be generalized to any rational value of the same param-
eter. Several examples are given, among them the anisotropic oscillator
and a special case of the Tremblay-Turbiner-Winternitz system.

1 Introduction

The “extensions” of natural Hamiltonians were introduced in [4] as a tool for
building Hamiltonian systems with polynomial first integrals of any given degree.
The technique of extension was developed as the generalization of an iterative
procedure to generate a first integral of degree A € N — {0} in the momenta [3]

for the system
1
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This superintegrable system was already considered in [2], where it was re-
marked the existence of additional polynomial first integrals for several values
of A € Q and a general form for odd positive integers was conjectured. Then, a
generalization of the system was introduced by Tremblay, Turbiner and Winter-
nitz (TTW) [I1] and, subsequently, studied by many authors (see for instance
[8, [7, @] and references therein), proving the superintegrability of the TTW
system, and of several related new systems, for any rational value of A.
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The technique of extensions was generalized in [5] and employed to build
new superintegrable systems from existing ones in [6]. The extension theory
can be easily generalized to complex manifolds, see [7] for details.

In this paper we develop a more general iterative procedure that in particular
allows us to construct, for any positive rational A = m/n, a polynomial first
integral of degree m + n — 1 of the system (IJ), as well as of the two uncoupled
harmonic oscillators with rational ratio A of the frequencies
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For both systems, the case of integer A is recalled in Sec. 2, where the extension
technique is briefly summarized. Its generalization is exposed in Sec. 3, while
Sec. 4 contains several detailed examples. In the Appendix, the trigonometric
tagged functions, employed extensively in the article, are defined and some of

their properties are shown.

2 Extension of Hamiltonian systems

The extension procedure has been characterized in [4}[5]. Given a Hamiltonian L
on a 2n-dimensional Poisson manifold @, we construct the (2n + 2)-dimensional
Poisson manifold M = T x @Q, where T is the cotangent bundle of a one-
dimensional manifold with the canonical symplectic form dp, A du.

The main result (Proposition 1 in [5]) states that a Hamiltonian L on the
Poisson manifold @, with Hamiltonian vector field X, admits an extension of
the form

S8+ o)L+ (u),
with a polynomial first integral of the form U™ (G), where

U =pu+yw)Xc,
if and only if there exists a function G on @ that satisfies the relation

X2(G) = —2m(cL + Lo)G, (3)

for some m € N — {0} and ¢, Ly € R. If a solution is found for (mec, Lg) with
¢ # 0, then, without loss of generality we can set Lo=0. When the relation (3]
holds, the function + is any solution of

7'+ 2e7y" =0 (4)
and the functions « and § are calculated directly from v through the relations
a=-m7y, B=mLy>. (5)

The form of ~, and therefore of the operator U, depends on the value of c¢. If
¢ # 0, then for any x € R a solution of ) and the corresponding operator are

1
U=p,+=——XI.
P +T,1(cu) v



The choice Ly = 0 leads to f = 0, hence, up to inessential constants, the

extended Hamiltonian is
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where the trigonometric tagged functions Sy, T} are defined in the Appendix.
Conversely, if ¢ = 0, then for any A € R

v = —Au, U=p, —AuXy

and the extended Hamiltonian, written up to inessential constants, becomes
1
§pi + mAL + mLoA%u?.

The parameters in equation ([B]) and (@) are chosen in order to obtain a function
v, and therefore an operator U, not depending on m. This choice, going back
to [4], gives a simpler form for v but has a drawback: G seems to depend on the
three independent parameters m, c and Ly instead that on the two parameters
mc and mLg, as in fact it is. By setting instead ¢ = mc and Lo = mLo,
equations (@) and (@) become respectively

X2(G) = —2(éL + Lo)G, (6)
my” + 2¢yy = 0. (7)

Within this notation, G explicitly depends on two parameters only and it is
clear that G remains the same for different values of m, but v and U become
dependent on m. A simple calculation shows that if v(u;c) satisfies (@) then
m~y(u; ¢) satisfies ([); moreover, relations (&) hold unchanged.

In the following, the choice of parameters made in equations (6] and () will
be used and therefore, for ¢ # 0, k € R,

m
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and the extended Hamiltonian becomes
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Conversely, for ¢ =0, A € R, we have

v = —mAu, U =p, —mAuXy, (10)

and the extended Hamiltonian becomes
%pierQALquQEOAQuQ. (11)

When L is a natural Hamiltonian, and therefore @) is the cotangent bundle of a
Riemannian manifold, the configuration manifolds of the extended Hamiltonians
are warped manifolds.

Several explicit examples of extensions are exposed into details in [3] [4] [6].



Example 1. (See also [3]) We apply the extension procedure to the Hamiltonian

a

1
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One of the possible extensions (with x = 0) is
e =L AL a4 (13)
- 2pu u2 2p¢ sin2¢ ’

which coincides with the Calogero-type system (II) after the rescaling ¢ = M.
In this example ¢ # 0 and A2 = m?/¢é. The relation (6) imposes a very strong
constraint on the parameters: if the function G does not depend on the mo-
menta, then (@) has a solution only for ¢ = 1 and Lo = 0. Hence, A2 = m? and
A is necessarily an integer.

Example 2. (See also [6]) We consider the system of two uncoupled harmonic
oscillators (). By rescaling u = Ay and dividing the Hamiltonian by the con-
stant factor A2, we get the equivalent Hamiltonian

1 1
H* = §pi + A2 <§pi + w2z2> + Mw?u?, (14)
Here we have an extension of the one-dimensional harmonic oscillator with ¢ = 0,
A2 =m2A and w? = ALg. Even in this case, the equation (6) admits a solution
not depending on the momenta only for Ly = w?. This constraint implies A = 1
and A2 = m?2, forcing A to be an integer.

Both systems of the above examples admit the maximal number of function-
ally independent first integrals, namely, H, L and UG, for \ integer, so that
they are superintegrable. However, it is well known that Hamiltonians (I3]) and
(I4)) are superintegrable for any rational value of the parameter A ([7, 9] [§]). In
the following we show an effective procedure to construct a third independent
first integral for non integers values of A by means of a more general extension
procedure.

3 Extensions with rational parameters

It is useful to slightly modify the expression of the extensions introduced so far
and rename them as follows

Definition 1. The Hamiltonian
1 ~
defined on the Poisson manifold T X @, is a m-extension of L generated by G,

if
K = (pu +my(u) X1)™(G) (16)

is a first integral of H,,.



The comparison between ()-(TI) and (I5%)-(I8) shows that &, 3, 7 are inde-
pendent of m and that in particular the following relations hold
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(see Table 1 for their expressions according to the value of ¢). Moreover, G must
satisfy ().

G=0 | ¢£0
¢
o )
e S2(cu)
B = LO:Y2 = E0A2u2 0
1
5 = —A
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Table 1: Functions involved in the m-extension of L

In order to write as extensions the Hamiltonians (I3)), (I4) with A = ™, one,

naively, should divide a, B, % by n2. This corresponds, roughly speaking, to a
m-extension of L/n?. More precisely,

Definition 2. The Hamiltonian

2 2
2+ )+ T B, (1)

Hmn:
’ 2

n

defined on the Poisson manifold T x @, is called a (m,n)-extension of L gen-
erated by a function G, if

K = (pu+ 53w X2) " (Gn) (18)

s a first integral of Hy, n,, where &, B, 7 are defined as in Table 1.

Lemma 1. A Hamiltonian L admits a (m,n)-extension generated by a function
G, if and only if the function G,, satisfies

X2(G,) = —2n%(¢L + Lo)Gh. (19)

1
Proof. The Hamiltonian L(") = — L admits a m-extension if and only if there

exists a function G,, satisfying
Xﬁw(G@::f2&LWW+L$O(%.
The m-extension of L(™) is then given by
%pi+ﬂn2dL“”4fn3500, (20)

with first integral
(Pu +mAX o)™ (Gn),



where (") = E(()")’yQ and &, 8, 7 are given by Table 1. The definition of L(")
implies
1 5 c = (n)

Hence, after setting B = INJOﬁQ, one has
- ) 1 - -
B = LM3% = —Loi® = =5

n n

and the extension (20) becomes

1, m?_ m? -
gbut zal+I5h
which coincides with the (m,n)-extension of L. O

Remark 1. The Proof of Lemma [l shows that it is not restrictive to assume
in Definition Bl that &, 8, 4 are those given in Table 1.

Consequently, the search for extensions with rational parameter reduces to
the search for solutions of ([I9)). Theorem 2] shows how to construct iteratively
solutions G, of (I9) starting from a known solution G of (@l).

Theorem 2. Let G be a function on Q satisfying
X1 (G) = AG
with X1, (A) =0, then the recursion
G1=G,  Gu = X1(G)Gn+ -G X1(Cn), (21)
satisfies, for any n € N — {0},
X2(Gp) = n*AG,,.

Proof. By induction on n. For n =1, one has G2 = 2G X1(G) and the relation
X?2(G2) = 4AGy is straightforward. Then, let us assume that G, satisfies
X?2(Gp) = n?AG,,. Recalling that for two functions A and B the formula

X?(AB) = X?(A)B +2X1(A)X(B) + AX?(B)
holds, we get
1
XE(Guir) = XE|XL(G)G+ OXL(G)
= X} (G)Gn+2X2(G)XL(Gn) + XL(G)XE(Gn) +
1
= [XE(@)XL(Gr) +2XL(G)XF (Gr) + GXF (G|
= AXL(G)G, +2AGX(G,) +n*AXL(G)G, +
% [AGXL(Ga) + 20°AX1(C)Go + n*ACXL(G)]
= (1+2n+n*)AXL(G)G,
= (n + 1>2AGn+1.

142 2
+ MAGXL(Gn)



Corollary 3. A Hamiltonian L admits a m-extension H,, if and only if it
admits a (m,n)-extension Hp, ,, for any positive rational m/n.

Proof. If L admits m-extensions, then there exists G satisfying (@). By Theorem
with }
A = —2(¢L + Ly), (22)

we can construct G, verifying the condition (I9) for any n. Hence, we can
construct the (m,n)-extension (I7). The converse is straightforward. O

Proposition 4. The closed form for G,, satisfying the recursion (Z1]) is

(=]
n 2k
Gn _ § <2k N 1> AkGQkJrl(XLG) 2k 17 (23)
k=0

where [-] denotes the integer part.
Proof. Since
Xp(G*FH XL = 2k+ 1) (X,G)"
+(n — 2k — 1)AG* (X, G)" 22,
and using the identity

%kﬂ (21;;1) + nianH (21:—1) = (275;11)’

by applying the recursion (2II) we have that for n = 2i

1
Gait1 = Xio(G) Gzi-l—ZGXL(GQi)
i—1 .
_ 2 26+ 1\ koktt %—2k
_ 2k+1)(1+ ! )AG (X1G)
k=0
Lo 9%k -1/ 2 .
Ak-i—l 2k+3 X 2i—2k—2
+kz 2 (2k+1) GG
1—1 .
% \2+2h+1 , onis 2ieoh
— ST ARG (X, G2
2h+1) 21 G ( G)
h=0
2% —2h+1( 2 ot S
- - ARG (X, )2
+h:1 n (2h1> (X2G)

= (20 + 1)G(XLG)* 4+ N'G*H!

2i+2h+1 [ 2i 2i—2h+1( 2i hv2h+1 2i—2h
Jrz { l+2i+ (2hi1) + = 2i+ (2hi1):| A"G (XpG)™
h=1

~ (204 1Y okt 2i—2k
= A X v
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that is (23]) with n = 2i + 1. The case n = 2i 4+ 1 is analogous:

1
Gaiva = Xp(G)Gaig1 + ﬁGXL(GQiJrl)
_ (20 +1 2k+ 1Y k2Kt 2ip1—2k
- O<2kz—|—1>< 2i+1)AG (X26)

‘ 21 —
Jrz 2t +

: (2@+1)21+2h+2

21+ 1\, i—2k—
A +1,¥2k+3 X 2i—2k—1
<2k + 1) GTXLG)

AhG2h+1 (XLG)2i+1—2h

I
(-

= 2h + 1 20+ 1
2% —2h+1( 2i .

n 7 = + (th 1)AhG2h+1(XLG)2z—2h
h=1

= (2@+2)G(X G)?tt

Jrz [21+2h+2 21+1) 4 2i—2h+2(2i+1):| AhG2h+1(XLG)2i+172h

2i+1 \2h+1 2i+1 \2h—1
h=1
_ Z 2i+2 ARGRRHL (X Q)2 12,
2k+1
k=0
that is 23]) with n = 2i + 2. O

It follows that, if L is quadratic in the momenta, then G,, is polynomial in
the momenta of degree at most

n (1 + deg(G)) — 1.
From [5], we can derive the explicit expression of the first integrals K, ,, of
any (m,n)-extension
Proposition 5. Let G,, be a recursion with G1 = G satisfying (@), that is with
A given by (23). We have
Km,n = Pm,nGn + Dm,nXL(Gn); (24)
with

S m m N\ ok k
Pon= 2 (2/<;) (EV) P A

[(m—1)/2]
1 m m _\ 2k+1
Dy = — (%) Ry U 1,

n

e
2

where [-] denotes the integer part and Dy, = 757.

U

1 We remark that in Theorem 3 of [5] the upper limit of the sum in Dy, is misprinted as
[m/2] — 1 instead of [(m — 1)/2].




Proof. Since the first integral K, ,, of a (m,n) extension of L is the first integral
of a m extension of L/n?, by Lemma [I]it follows that Theorem 3 of [5] can be
easily adapted, once we set v — ym/n?, —2m(cL + Lg) — n?A and G — G,,.
The result is straightforward. O

It follows that the degree of the first integral K, ,, for L quadratic in the
momenta, is
m+deg(Gn) <m+n(1+4deg(G)) — 1.

When m and n are not reciprocally prime, one can expect that the polyno-
mial K, , factorizes into a number of factors, some of them again in the form
K, s, where m = agr, n = ags, agp,7,s € N—{0}. Indeed, the computation of
several examples suggests that K, is then a divisor of K, 5.

4 Examples of (m,n)-extensions

Once a m-extension of a Hamiltonian L is known, it is straightforward to build
any (m,n)-extension of L, as the following examples show.

4.1 Two uncoupled oscillators

Let us consider the two uncoupled harmonic oscillators described by the Hamil-
tonian (4], extension of

1
L = api + WQZCQ,

for integer values of the parameter A. In this case the vector field Xy is given
by

0 0
X1 = pp— — 202 .
L= Peg = Wrg

We can easily find a G(z) not depending on the momenta satisfying the condition
@), with ¢ = 0, Lo = w?; indeed (@) reduces to

p2(G") — 203 (2G' — G) = 0.

Thus, G = z up to an inessential multiplicative constant and X (G) = p,.
Then, by setting A = 1, we can construct the (m,n)-extension of L

1 2 2
Hpm =2 <p’t21. + (E) pi) + w? (@) (12 + U‘Q) )
2 n n

for any m, n positive integers, which is equivalent (up a rescaling and a constant
factor) to (@) with A = m/n. The first terms in the recursion (2I]) are

Gi = =,

Gy = 2xpg,

Gs = 3z p?—2wad,

Gy = dapd—8w?®p,,

Gs = bz ph—20w?2® p? + dw'a®.



Alternatively, formula ([23) becomes in this case

(=]

n
- 92\ g2kl n—2k—1
G ;)(2,{“)( W) a? g

For some values of (m,n) we get the following first integrals

K11 = xpy—ups,

Ki2 = 2T pspu—u (%Pi - w2x2) )

Koo = 2(xpy — ups)(papu + 2w zu),

Kz = 2 p.p), — g“ papy + w?zu p, — 2Tw?zu® popu,
+2I7w2u3 pi — gw‘leu?’.

We remark that K, is a multiple of K ;. This factorization is related to the
fact that (1,1) and (2, 2) represent the same rational number.

4.2 Calogero-type systems

We consider now the (m, n)-extensions of the Hamiltonian (I2]). In this case the
vector field Xy, is given by

d 2acos¢p O

Xp,=pp—+———.
o p¢0¢+ sin® ¢ Opg

We can easily find a G(¢) not depending on the momenta satisfying the condition
[©), with ¢ = 1, Ly = 0; indeed (@) splits into

sin ¢

cosgbG =0

(G"+G) =0, G +

Thus, up to an inessential multiplicative constant, a solution is G = cos ¢ and
XL(G) = pgsing. Then, by [2I) we can construct the sequence of G,,, whose
first terms are

G1 = cos¢,

Gy = —sin2¢py,

G3 = —cos3¢ pi — %

Gy = sind¢p) — %p@

R s

We can construct the (m, n)-extension of L

1 m? 1 a
Hpy =< 2 e YN
’ Put n2S2(u) (2p¢ N sin2(¢)) ’

10



for any m,n positive integers. According to the sign of the parameter x, the
extended Hamiltonian is defined on the cotangent bundle of a sphere (x > 0), of
a plane (k = 0) or of a pseudo-sphere (k < 0). Moreover, for k = 0 the extension
coincides with (I3)) that, after the rescaling ¢ = A, becomes the Hamiltonian

o 1 1 /1
a
H=-pi+—|= 2+7>,
2pu u2 <2p1/1 Sin2()\1/))
for any rational A = m/n. This Hamiltonian generalizes the Calogero three
particle chain without harmonic term (obtained for A = 3, see [2], also known
as Jacobi system) and it was the starting point of our work in [3]. This is a
particular case of the TTW system [I1].

As an example, we compute a first integral of the extension ([I3) for (m,n) =
(2,3) i.e., A =2/3,

4 4cos3¢ 2a cos® ¢
_ 2 2 : 2 3 4 2
Ko = —cos3¢ pupy + oo sin P(4cos” ¢ — 1) pupy, + gz Do Tguzg P
8a cos? ¢ n 8a(5cos?p —3)cosd o  16a%cos® ¢
usin ¢ ubs 9u? sin® ¢ ? 7 9u2sin? ¢

4.3 Three-sphere

Any example of m-extension taken from [3] 4 [5 [6] can be easily transformed
into a (m, n)-extension. For example, let us consider from [4] the m-extension
of the geodesic Hamiltonian

1 PZ PZ
I == 2 &1 [P
2 <p77 * sin? 7 + cos? 7

on the three-sphere S?, with coordinates (1, &1, &) where 0 <n < 7/2,0 < & <
27 and the parametrization in R* given by

x =cosésinng, y =siné; sinn, z = cos&s cosn, t = sinéy cosn.

Equation (@) admits a complete solution (i.e., a solution depending on the max-
imal number of parameters a;) if and only if mc = ¢ equals the curvature K =1
of the three-sphere [4].The complete solution is

G

(assin(&1) + ag cos(&1)) sin(n) + (a1 sin(§2) + az cos(&2)) cos(n)
= a4 + a3y + a2z + ait,

with a; constants. We look for compatible potentials V|, i.e., functions that can
be added to L in such a way that G satisfies (@) for the natural Hamiltonian
L+ V. It is easier to find compatible V' when some of the parameters a; in G
are assigned. For example, if as = a3 = a4 = 0, a compatible potential is

o Sin§1
~ cos&ycosnsing’

11



With this choice of (a;), the first three G,, obtained from G = sin &, cosn are

G1 = sinéscosn,
Gy = —sin2nsin®&, Dy + 2sinés cos & pe,,
3
cos
G3; = —cos3nsin®&,y p% — 6sinnsin® & cos & N 1 sin® & p?l
n

N sin&y(3cos? & — cos?nsin? &) 5 sin® £y sin &, cos?n

cos &2 cos&ysiny

the (m,n)-extension of L + V is

1 m\2 L+V
= ()
mn = 5P T\ ) G2y
and, for example, a first integral of H; o is
1 1 . sin 7 cos &o sin s
K = _Z 2 2 2 _ 2 T PRAR he
1,2 To(w) ( 5 CoS 27 sin &2 v, cos PnPes
cos?nsin® &y,  cos?& —cos?ysin®éy ,  sin?&osiné cosn
2sin? 7 P, 2cos? Pe sinn cos &y

—  2sin2nsin® & DuPy + 25in & cos &2 pupe, -

5 Conclusions

In this article we show that the technique of extensions can be modified in order
to be applied successfully also to a class of Hamiltonian systems (including some
known superintegrable ones) depending on rational values of a parameter. Many
properties of the first integrals obtained, for instance their factorization, need
a deeper analysis and the possibility of the use of the technique to build new
extended systems with rational parameters is still unexplored. This short expo-
sition is certainly not a complete theory of extensions with rational parameters,
but it represents a solid ground for building such a theory.

6 Appendix

The trigonometric tagged functions

sin /R
vk k>0 cos /KT k>0
Se(z)=¢ < k=0 Culz)=¢ 1 k=0,

sinh /x| V“lﬁlm k<0 cosh/|slz k<0
Sk(z)
Tf'i = ;
(z) R
are employed, explicitly or not, by several scholars (see [I0], [1]) and appear in
several branches of mathematics.

The trigonometric tagged functions satisfy a number of properties analogous
to those of ordinary trigonometric functions. Their main advantage is to unify

12



trigonometric and hyperbolic functions in a homogeneous way. From the defi-
nition it follows that S, (x) is an odd function while Cy(z) is an even function
but, if K < 0 and x € R they are no more periodic. The basic properties are

Cg(x) + nSﬁ(m) =1,

Se(x£y) = Su(x)Cxly) £ Cu(x)Sk(y),
Colrty) = Cu()Ch(y) F k9% (7)Sk(y),

from these the duplication formulas can be obtained

Se(2x) = 2S5.(2)Cy(x),

202%(z) — 1,

Cw(27) Cﬁ(w) - ”Sg(x) = { 1_ 2/&53@).

The bisection formula

1+ Ck(2
C2(a) = 1H G20
2
is always true, while one has to set x # 0 in order to obtain
1—Cy(22)
S2(g) = — =27,
HOEES—

The functions Sy (z) and Cy(x) are related through differentiation:

d d
= %C,{(:c) = —kSk(x).

Hence, the linear combinations of S,;(x) and C(z) provide the general solution
of the differential equation
F" 4+ kF =0.
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