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Abstract
Efficient staff allocation and workload management are critical challenges within the health-
care industry, impacting patient satisfaction and treatment timeliness. Many hospitals still
rely on manual methods for patient record management and staff assignment, resulting in
uneven work distribution and patient dissatisfaction due to delayed treatments. To address
these pressing issues, we propose a novel Deep Learning Enhanced Shapley Values Allo-
cation (DESVA) approach, including a cooperative game theory approach that utilizes the
Shapley value concept in Deep Neural Network (DNN). This research explores the transfor-
mative potential of cooperative game theory in revolutionising healthcare staff management
practices. Our approach systematically assesses patient needs and staff capabilities, foster-
ing cooperation among healthcare team members. Through practical applications in hospital
management projects, we aim to achieve equitable work allocation and enhance the overall
patient experience. Within this study, we delve into the intricacies of team interactions and
the role of a designated entity in healthcare staff management. Our findings underscore the
proactive contributions in optimising both individual and team performance. Furthermore,
we emphasize the importance of adaptive strategies within healthcare teams, acknowledging
differing energy levels and effectiveness. Team members are encouraged to adopt active or
passive roles as the situation demands, all while considering potential costs associated with
interpersonal relations and workflow processes. This adaptive approach ensures a balanced
and responsive allocation of resources. It is important to note that this research extends
beyond healthcare. The insights gained from our cooperative game theory approach hold
relevance for professionals and decision-makers across diverse domains. By recognizing the
significance of teamwork, resource allocation, and adaptability, these insights empower pro-
fessionals to identify suitable strategies formaximizing outcomes in their respective contexts.
The performance of DNNs and Shapley values in DESVA is intertwined. DNNs offer the
modelling prowess to capture intricate healthcare data relationships, while Shapley values
measure the contributions of staff members. The efficiency and effectiveness of the proposed
DESVA are ultimately showcased through rigorous simulations.
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1 Introduction

Game theory is a decision-making theoretical framework for performing an essential role
in social applications for competing players. This works on the science of strategy among
multiple players to make optimal decisions. The healthcare industry must have an efficient
workforce to safeguard societal health andwell-being.Organising theworkers and optimising
the work requires advanced technology to understand. Tomake the perfect decision on organ-
ising theworkforce, cooperative game theory supports two sides for optimal decision-making.
The healthcare industry stands at the forefront of technological advancements, promising
exceptional advantages in patient care and medical services. Healthcare institutions have
recently witnessed remarkable progress in medical treatments, diagnostic capabilities, and
patient outcomes (Lazebnik, 2023; Sasanfar et al., 2021).However, amid these advancements,
the industry grapples with a critical challenge that has profound implications for healthcare
providers and patients: allocating and managing staff resources. Efficient staff allocation and
workload management have emerged as central tenets of healthcare delivery. The alloca-
tion of skilled professionals, such as doctors, nurses, and support staff, directly impacts the
quality of patient care and the overall hospital environment (Lewis & Mulla, 2021; Li et al.,
2022, 2023). Proper staff allocation ensures that healthcare facilities operate smoothly and
contributes significantly to patient satisfaction and timely treatments.

In the contemporary healthcare landscape, characterised by remarkable advancements
and innovations, it is paradoxical that many healthcare institutions persist in using archaic,
manual methods for staff allocation and workload management (Hao et al., 2023a; Li, 2021;
Wu et al., 2023). These traditional systems demand that staff members partake in labour-
intensive site visits to access patient records and make crucial decisions regarding allocating
staff resources. Unfortunately, this dated approach often results in a significant imbalance in
work distribution and delays in providing essentialmedical care to patients. The repercussions
of these imbalances are starkly evident: patients frequently endure prolonged wait times, and
the overall effectiveness of the healthcare system becomes compromised (Hao et al., 2023b;
Li et al., 2023; Xue et al., 2023). Recognising the pressing need for a transformative solution
to this systemic challenge, our proposed approach emerges as a beacon of hope. Rooted
in the principles of game theory and, more specifically, making adept use of the Shapley
value framework, our approach seeks to revolutionise the healthcare landscape (Cai et al.,
2019; Wang et al., 2018). It acknowledges the intricacies of staff allocation and workload
management, aiming for a more equitable and efficient system. By harnessing the power of
game theory and the Shapley value concept, we strive to ensure that every staff member’s
contribution is recognised and appropriately factored into the allocation process. Through
this innovative approach, we envision a future where patient care is more streamlined, wait
times are significantly reduced, and the healthcare system’s overall effectiveness is elevated
to new heights (Talaat, 2022).

In this paper, we introduce a novel methodology of deep learning-enhanced Shapley value
allocation (DESVA), which proposes to estimate Shapley values within deep neural networks
(DNNs) in the context of healthcare staff allocation. Shapley values are a concept from coop-
erative game theory used to distribute the "credit" or contribution of each feature or player
in a system fairly to an overall outcome. In healthcare, Shapley’s values help determine the
importance of individual healthcare staff members in contributing to effective staff alloca-
tion and workload management. The heart of our approach lies in understanding the intricate
interplay between patient needs, staff capabilities, and the dynamic nature of healthcare envi-
ronments (He et al., 2019; Macedo et al., 2019; Yu et al., 2015). By systematically assessing
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healthcare professionals’ knowledge, skills, and expertise, our approach fosters cooperation
among staff members, leading to a more balanced distribution of workloads. Furthermore, it
considers the diverse teams operating within healthcare facilities, acknowledging that team
dynamics and effectiveness vary.

The main motivation behind this research is to manage the workgroup’s workload effec-
tively. The staff in the hospital require a daily work plan; if it doesn’t work, it leads to uneven
work distribution. This creates inequality among the staff and results in improper resource
management. This inefficiency directly impacts patient satisfaction and the timeliness of
treatment. The proposed DESVA approach aims to revolutionise these traditional methods
by introducing a sophisticated, data-driven model. A core goal of this research is to enhance
patient experiences in healthcare facilities. By ensuring equitable and intelligent staff allo-
cation, the DESVA approach minimises treatment delays and improves patient satisfaction,
contributing to better healthcare outcomes.

Our study introduces a distinctive application of game-theoretic modelling within the
healthcare sector and broadens its relevance beyond patient care. Professionals in software
development and decision-makers in diverse fields can find valuable insights in our approach,
enabling them to optimise resource allocation and attain optimal outcomes in their respective
domains. Our proposed DESVA stands as a robust solution, promising to enhance staff
resource allocation andminimise patientwait times, ultimately elevating the overall quality of
healthcare services systematically and fairly. To validate these claims, we conduct simulation
experiments in subsequent sections, providing concrete evidence of the effectiveness of our
proposed DESVA.

The main contributions of the paper are as follows.

• Weproposed a novelDESVAapproach for effective staff allocation in the healthcare sector.
• TheDESVAapproach leverages the formidable capabilities of ShapleyValueswithinDeep
Neural Networks (DNNs) using cooperative game theory principles.

2 Literature review

2.1 Staff allocation and decision-making discussions

In response to the COVID-19 pandemic (Dunn et al., 2020), healthcare providers are adapting
their staffing and care models, necessitating reallocating healthcare professionals to high-risk
critical care settings. This paper delves into the ethical implications of staff allocation changes
during the pandemic. It argues that healthcare professionals shouldn’t be ethically obligated
to treat patients when it puts them at risk. It highlights the need for a thoughtful process
to shift staff from their usual roles due to changing healthcare needs. Resource allocation
for preventive health interventions (Ananthapavan et al., 2022) in the NSW Government,
Australia. It highlights a disconnect between the NSW Treasury, emphasising economic
efficiency, and the NSWMinistry of Health, which mainly uses economic evidence for inter-
agency persuasion. Barriers include capacity constraints, departmental collaboration gaps,
and suboptimal inter-sectoral decision-making processes. The study advocates institutional
changes to promote a comprehensive government-wide strategy and align with best practices
in resource allocation.

The COVID-19 pandemic has underscored the importance of efficient medical resource
allocation (Wang et al., 2022).While ethical frameworks exist, translating them into practical,
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legally compliant hospital protocols is complex. InMaryland, a consortium of five health sys-
tems representing a substantial portion of the state’s hospitals collaborated to create resource
allocation guidelines. These guidelines encompass diverse resources like ventilators, ICU
capacity, blood products, and therapies, requiring customised algorithms due to their unique
nature. Developing and refining these allocation processes is an ongoing endeavour, and
the authors share their insights to aid other regions dealing with similar resource allocation
dilemmas in times of public health crises.

The study (Kekkonen et al., 2018) explores the impact of rational task allocation between
nursing staff and support service providers in healthcare, aiming to enhance work system
outcomes. Using a work systemmodel and integrating resilience and cost concepts, the study
employs qualitative case studies and participatory design to optimise cooperation between
personnel groups. The findings emphasise that rational support services should be compre-
hensive, resilient, reliable, and easily accessible to improve the healthcare environment.

District-level decision-making for maternal and child health resource allocation in India
underscores the significance of data-sharing and inter-departmental coordination (Hu et al.,
2022). The findings indicate deficiencies in structured decision-making processes and data-
sharing, leading to the underutilisation of available data for planning. The study underscores
the potential for enhanced collaboration and data-driven decision-making at the district level
to improve health outcomes.

Creating an ethical (Guidolin et al., 2022) decision-making tool for COVID-19 resource
allocation. The authors formed an interdisciplinary team to develop a stepwise, semiquan-
titative tool that integrates institutional objectives, procedural values, ethics, and decision
criteria. This tool is designed to assist healthcare leaders in making fair and ethically sound
resource allocation decisions during the pandemic and in the future.

Resource allocation decisions (Dawson et al., 2020) during the COVID-19 pandemic
in New South Wales, Australia. A working party of ethicists and clinicians created the
framework in a question-and-answer format, designed to be accessible and practical for
decision-makers. This framework underwent multiple revisions based on feedback from
experts and the public before being made available online within a short timeframe, aiming
to provide a valuable resource for addressing resource constraints during pandemics.

Sustainability in Health Care by Allocating Resources Effectively (SHARE) program
(Maritta et al., , 2021) aimed to address disinvestment in an extensive Australian health
service network systematically. The program, conducted in three phases, sought to identify
and implement disinvestment opportunities within the organisational infrastructure, integrate
disinvestment with all resource allocation decisions, consider non-monetary resources, and
optimise healthcare outcomes with limited resources. This approach contributes to under-
standing systematic disinvestment in local healthcare and has policy, practice, and research
implications.

Here (Harris et al., 2017), the SHARE program focuses explicitly on developing, imple-
menting, and evaluating support services within a large Australian health service. These
services aimed to facilitate evidence-based decision-making for resource allocation, includ-
ing disinvestment, and required expertise, education, training, and support for health service
staff. The methods used included literature reviews, surveys, interviews, consultation, work-
shops, and applying theoretical frameworks to evaluate processes and outcomes.

The discussion (Chaovalitwongse et al., 2017) focuses on the Princess Mother’s Medical
Volunteer (PMMV) Foundation in Thailand, which provides free mobile medical services in
remote areas with limited access to healthcare. The paper proposes a decision support model
in the form of a computer information system (CIS) to optimise the allocation of volunteer
medical staff (Nikkhoo et al., 2023) to operation sites. This model aims to streamline data
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organisation, improve efficiency, and minimise transportation costs (Ghadermazi & Chan,
2023). The research outcomes were positive, indicating its effectiveness in enhancing the
allocation process (Ashraf et al., 2023).

There are more studies discussed on decision support systems. However, decision-making
accuracy becomes a major issue. Sometimes, simple errors in decision-making result in
improper staff management. This leads to work incompleteness and some work over-
completion. The proposed model based on the game theory approach has addressed this
research gap.

3 Methodology

3.1 System overview

The DESVA system model for healthcare staff allocation comprises several interconnected
components that work collaboratively to optimise the allocation of healthcare personnel. At
its core are DNNs, which serve as the modelling backbone. These DNNs are trained using
pre-processed healthcare data, including patient needs, staff qualifications, historical alloca-
tion patterns, and performance metrics. The DNNs are tasked with capturing the intricate
relationships between these data elements to make allocation recommendations. The unique
feature of DESVA lies in its application of Shapley values, calculated using a customised
Deep Shapley Algorithm. These Shapley values quantify the contributions of individual staff
members to the staff allocation process, enabling a fair and efficient allocation strategy. The
Shapley values are seamlessly integrated into the staff allocation algorithm, ensuring tasks
are assigned based on eachmember’s unique strengths and capabilities. The system generates
comprehensive outputs, including staff allocation decisions and Shapley values, which are
valuable insights for healthcare administrators. Optionally, a feedback loop can be incorpo-
rated for continuous improvement, allowing DESVA to adapt and enhance staff allocation
efficiency over time. Overall, the DESVA systemmodel combines the strength of deep learn-
ing, Shapley value calculations, and real-time allocation to revolutionise staff allocation in
healthcare, ultimately improving patient care quality and operational efficiency.

3.2 Proposed DESVA architecture

As per the study discussed under (Ancona et al., 2019), we adopt the deep approximate
Shapley Propagation (DASP) technique to allocate staff effectively in the healthcare sector.
How is it possible to explain the below considerations? The DASP works in the context of
DESVA are described as follows.

3.2.1 DNN

DNNs are at the heart of DESVA and play a crucial role. They are deep-learning models
designed to capture complex relationships within healthcare data. In staff allocation, DNNs
are trained on healthcare-specific data, such as patient needs, staff qualifications, historical
allocation patterns, and performancemetrics. These networks learn how various factors relate
to each other and, ultimately, impact staff allocation.
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3.2.2 Co-operative game theory (Shapley Values) quantifying contributions

Shapley values, a concept fromcooperative game theory, are used to quantify the contributions
of individual staff members in the staff allocation process. They offer a way to fairly assess
and distribute each staff member’s value in allocating healthcare resources (Ancona et al.,
2019).

3.2.3 DASP

DASP addresses the computational challenges associated with calculating Shapley values,
particularly in the context of complex DNNs like those used in DESVA. This approximation
technique is vital for maintaining computational efficiency. DASP employs a perturbation-
based approach, which means it doesn’t attempt to compute Shapley values in their exact,
often computationally expensive form. Instead, it perturbs the input data during the calcula-
tion process. Here’s how it works: DASP systematically removes the contribution of a single
staff member from the input data, simulating the absence of that member’s impact on staff
allocation. It then assesses the resulting allocation outcome. This procedure is repeated for
various coalitions of staff members, each time evaluating how the absence of a particular
member influences the allocation. These impact assessments are then aggregated to approx-
imate the Shapley values. One of the strengths of DASP is its seamless integration with
DNNs. Deep learning models like DNNs are exceptional at processing and comprehending
complex healthcare data. DASP takes advantage of this capability by calculating Shapley
values concurrently with the DNN’s data processing. This integration is smooth and natu-
ral within the DESVA framework, as it ensures that staff allocation decisions are made in
real-time or during model training, incorporating fairness and equity considerations into the
allocation process. DASP becomes an integral part of DESVA’s decision-making process,
contributing to the system’s effectiveness in healthcare staff allocation.

3.2.4 Performance of DESVA in efficient staff allocation

The combined power of DNNs and DASP equips DESVA with the capability to allocate
healthcare staff resources efficiently. DNNs excel at capturing the intricate details and com-
plexities of the healthcare environment, providing the system with a deep understanding of
the context in which staff allocation decisions are made. On the other hand, DASP ensures
that these decisions are fair and just, as it calculates Shapley values to compensate staff
members fairly for their contributions. Integrating Shapley values, determined by DASP,
into the DESVA framework is pivotal in making the system’s equitable and well-informed
resource allocation decisions. Staff members are assigned tasks and responsibilities based
on their contributions, ensuring that resources are utilised efficiently and that staff members
are recognised for their input. DESVA can be designed with a feedback loop to enhance its
effectiveness further. This feedback mechanism allows the system to improve its staff allo-
cation strategies continuously. Real-world outcomes or simulation results can be fed into the
system, enabling it to adapt and respond to changing healthcare needs. In this way, DESVA
evolves, becoming more refined and better equipped to meet the dynamic demands of the
healthcare industry.

123



Annals of Operations Research

3.3 Deep Shapley Algorithm to calculate the Shapley values of staff

Input: Healthcare data x , coalition sizes k1, ..., kk , initial weights for staff capabilities w,
customized DNN model Fc

Step 1: Initialize result vector Rc for Shapley values at zero
Step 2: for each staff member i � 1toN do
Step 3: for each coalition size k � k1, ..., kk do
Step 4: Perturb the data to compute Shapley values
Step 5: x � x
Step 6: x[i] � 0
Step 7: Compute statistics of features excluding i
Step 8: μ � 1

n−1 (Wx) // where W represents network weights

Step 9: Compute variance
Step 10: σ 2 � 1

n−1

(
W 2x2

) − μ2

Step 11: Compensate for the current coalition size
Step 12: μ � kμ
Step 13: σ 2 � k k−1

n−1σ
2

Step 14: Compute bias introduced by i
Step 15: μ � μ + x[i]w(1)

Step 16: Propagate distributions up to the output layer
Step 17: μ(l), σ 2(l) � F̂c

(
μ, σ 2

)

Step 18: μ(l), σ 2(l) � F̂c
(
μ, σ 2

)

Step 19: Compute marginal contribution of i to coalitions of size k
Step 20: Rc[i] � Rc[i] + 1

k

(
μ(l) − μ(l)

)

Step 21: end for
Step 22: end for
Step 23: Output: Approximate Shapley values Rc

The algorithm begins by initializing a result vector Rc, which will store the Shapley values
for each staff member within coalition c. This vector is initialized with zeros. Then, it enters
two nested loops, the first one iterating over each staff member (indexed by i), and the second
one looping through different coalition sizes (indexed by k).Within these loops, the algorithm
perturbs the data to calculate Shapley values. It creates a perturbed dataset x by setting the
data of the current staff member i to 0 while keeping other data unchanged. Statistics are
then computed on this perturbed dataset to estimate Shapley values, including the mean μ

and variance σ 2. Afterwards, the algorithm compensates for the current coalition size k by
adjusting the mean and variance based on the coalition size. The mean μ is multiplied by
k, and the variance σ 2 is adjusted accordingly. The bias introduced by staff member i is
calculated, and the mean is updated to μ by adding the bias term μ � μ + x[i]w(1). Next,
the algorithm propagates these distributions through a customized DNN model Fc up to
the output layer. This involves computing new means and variances at each layer of the
neural network. Once the distributions are propagated, the algorithm calculates the marginal
contribution of staff member i to coalitions of size k, which is used to update the Shapley
value for staff member i in coalition c. These steps are repeated for each staff member and
each coalition size. Finally, the algorithm outputs the approximate Shapley values Rc, which
contain the Shapley values for each staff member within coalition c. In essence, it iteratively
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Fig. 1 Proposed DESVA Architecture

perturbs the data, accounts for coalition size and bias, and uses a DNN model to estimate
Shapley values for staff members in the healthcare data context.

4 Results and experiments

4.1 Experimental setup

In this study, the proposed DESVA’s performance in healthcare staff allocation is evaluated
using data from the Statistical Yearbook of Sichuan Province and the Health Yearbook of
Sichuan Province, covering the years 2010–2018. To gain a comprehensive understanding
of the dataset’s structure, readers are directed to a previous study for a more detailed expla-
nation (Gong et al., 2023). The primary objective is to assess the effectiveness of DESVA in
healthcare staff allocation, and to achieve this, DESVA’s performance is compared against
well-established techniques andmodels. These models include Deep Belief Network (DBN),
RestrictedBoltzmannMachine (RBM), Convolutional Neural NetworkwithGatedRecurrent
Unit (CNN-GRU), Long Term Short Term Memory (CNN-LSTM), and Generated Adver-
sarial Network based on Recurrent Neural Network (GAN-RNN) (Harrou et al., 2022). This
comparative analysis aims to highlight the strengths and weaknesses of DESVA and deter-
mine its suitability for enhancing healthcare staff allocation practices (Fig. 1).

4.2 Evaluationmetrics

In our evaluation of the proposed DESVA, we employ widely used metrics to assess its
performance. These metrics include accuracy, precision, recall, and F1-Score. To compre-
hensively evaluate DESVA, we conduct experiments using data from the province from 2010
to 2012, 2013 to 2015, and 2016 to 2018. These periods serve as distinct test cases, allowing
us to analyse how well DESVA performs in various scenarios and providing insights into its
effectiveness and robustness over time.

Accuracy � T P + T N

T P + FN + T N + FP
(1)

Precision � T P

T P + FP
(2)

Recall � T P

T P + FN
(3)
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F1 � 2 ∗ Precision × Recall

Precision + Recall
(4)

Figure 2 presents the performance evaluation in terms of accuracy of various models
DBN, RBF, CNN-LSTM, CNN-GRU, GAN-RNN and DESVA across different time periods
revealed distinct trends. From 2010 to 2012, the models exhibited varying accuracy levels,
with the Proposed DESVA standing out with an impressive accuracy of 98%, accompanied
by high precision and recall values. In the subsequent period of 2013–2015, all models
showed improvement, but the Proposed DESVA maintained its superiority with an accuracy
of 97.5%, and this trend continued from2015 to2018.Despite somefluctuations, theProposed
DESVA consistently excelled with an exceptional accuracy of 98%, affirming its reliability
and robustness in healthcare staff allocation throughout all time periods.

The ProposedDESVAdemonstrates remarkable and consistent precision efficiency across
different time periods when compared with different models of DBN, RBM, CNN-LSTM,
CNN-GRU, GAN-RNNwhich is illustrated in Fig. 3. Precision, a pivotal metric for assessing
a model’s accurate positive predictions, underscores how effectively the Proposed DESVA
assigns healthcare staff responsibilities based on their contributions. During 2010 to 2012,
the model’s precision consistently ranged from 95 to 96.24%. This signifies its ability to
identify and allocate staff members with remarkable accuracy, yielding minimal false pos-
itives. Subsequently, from 2013 to 2015, precision improved further, consistently ranging
from 95.6 to 96.89%, reinforcing the model’s proficiency in precise staff allocation. The
period spanning 2016–2018 saw sustained high precision, ranging from 97 to 98%. This
reaffirms the model’s unwavering competence in accurately assigning tasks to staff members
based on their contributions

The effectiveness of the Proposed DESVA in terms of recall, as depicted in Fig. 4, show-
cases its consistent and superior performance in correctly identifying relevant instances,
particularly in the healthcare staff allocation context. Recall measures a model’s ability to
capture and correctly identify all relevant instances out of the total true positive cases. In

Fig. 2 Accuracy comparison with existing models
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Fig. 3 Precision percentage of different models

Fig. 4 Recall comparison

this evaluation, the Proposed DESVA consistently outperforms other models over different
time periods, including DBN, RBM, CNN-LSTM, CNN-GRU, and CNN-RNN. From 2010
to 2012, the Proposed DESVA exhibited recall values ranging from 96.15 to 97.27%, indi-
cating its proficiency in identifying and allocating healthcare staff accurately. This is vital in
ensuring that no critical tasks or responsibilities are overlooked. Throughout 2013–2015, the
Proposed DESVA maintained its superior recall, with values ranging from 97.12 to 98.04%.
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Fig. 5 F1-Score

This highlights its reliability in consistently recognizing relevant instances, even as the dataset
evolves. From 2016 to 2018, the model sustained its exceptional recall performance, ranging
from 96.57 to 98.12%. This reaffirms its ability to capture and allocate staff members to tasks
effectively, reflecting its reliability and effectiveness in healthcare staff allocation.

The efficiencies of the Proposed DESVA, as illustrated in Fig. 5, are strikingly evident and
demonstrate its consistent and superior performance compared to other models, as indicated
by the F1-score—a comprehensive metric that combines both precision and recall. From
2010 to 2012, the Proposed DESVA displayed impressive F1-scores ranging from 95.42 to
96%. This signifies its remarkable ability to maintain a balance between making precise
positive predictions and ensuring that no relevant instances are overlooked. In healthcare
staff allocation, this equilibrium is vital to guarantee both the accuracy of task assignments
and comprehensive coverage. During the years 2013 to 2015, the Proposed DESVA sustained
its exceptional F1-score performance, ranging from 96.45 to 97.38%. This underscores its
continued effectiveness in making precise staff allocation decisions while minimizing the
likelihood of missing relevant instances. From 2016 to 2018, the model consistently achieved
outstanding F1-scores, ranging from 97.14 to 98%. These remarkable values reaffirm the
model’s proficiency in healthcare staff allocation, highlighting its reliability and efficacy
across diverse scenarios and evolving datasets.

The efficiency of the Proposed DESVA becomes evident when examining the overall per-
formance values depicted in Figure 6, which represent accuracy scores achieved by different
models across various time periods. Starting with the period from 2010 to 2012, the Pro-
posed DESVA stands out with an accuracy score of 96.24%. This signifies its ability to make
highly accurate staff allocation decisions during this time frame, surpassing other models.
Moving into the years 2013 to 2015, the Proposed DESVAmaintains its impressive accuracy
performance at 97.16%. This demonstrates its consistent ability to assign healthcare staff
members with precision and accuracy. From 2016 to 2018, the Proposed DESVA continues
to excel, achieving an accuracy score of 98.20%. This signifies its reliability in consistently
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Fig. 6 Overall performance comparison

making accurate staff allocation decisions, contributing to effective resource optimization in
healthcare settings.

Integrating feedback mechanisms into the DESVA approach is not just a tool for
improvement; it’s a strategic move towards creating a more adaptable, user-friendly, and
patient-centric system. This approach underscores the importance of evolving healthcare
management practices to meet the real-world demands of both healthcare providers and
patients.

5 Conclusion

In conclusion, this paper presents a novel and efficient approach, known as DESVA (Deep
Learning-Enhanced Shapley Value Allocation), for optimizing staff allocation within the
healthcare sector. Leveraging the cooperative game theory concept of Shapley values within
Deep Neural Networks (DNNs), DESVA offers a promising solution to the complex task of
resource allocation in healthcare settings. Our evaluation is based on extensive data from
the Statistical Yearbook of Sichuan Province and the Health Yearbook of Sichuan Province,
encompassing the years 2010 to 2018. By comparing DESVA with established models such
as DBN, RBM, CNN-LSTM, CNN-GRU, andGAN-RNN, we have demonstrated its efficacy
in healthcare staff allocation. Our experiments, conducted separately for the time periods of
2010–2012, 2013–2015, and 2016–2018, reveal that DESVA consistently outperforms these
models, reaffirming its robustness and adaptability across different scenarios. As we look
to the future, we anticipate further enhancements in our approach through the integration
of updated models and techniques. The results obtained thus far underscore the potential of
DESVA as a valuable tool for healthcare institutions seeking to optimize resource allocation,
minimize patient wait times, and ultimately improve the quality of healthcare services in
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a structured and equitable manner. The path forward involves continued refinement and
adaptation to meet the evolving needs of the healthcare sector.
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