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Prediction of velocity profile 
of water based copper nanofluid 
in a heated porous tube using CFD 
and genetic algorithm
Tiziana Ciano1, Massimiliano Ferrara1,2, Meisam Babanezhad3,4,5, Afrasyab Khan6 & 
Azam Marjani7*

The heat transfer improvements by simultaneous usage of the nanofluids and metallic porous foams 
are still an attractive research area. The Computational fluid dynamics (CFD) methods are widely used 
for thermal and hydrodynamic investigations of the nanofluids flow inside the porous media. Almost 
all studies dedicated to the accurate prediction of the CFD approach. However, there are not sufficient 
investigations on the CFD approach optimization. The mesh increment in the CFD approach is one of 
the challenging concepts especially in turbulent flows and complex geometries. This study, for the first 
time, introduces a type of artificial intelligence algorithm (AIA) as a supplementary tool for helping 
the CFD. According to the idea of this study, the CFD simulation is done for a case with low mesh 
density. The artificial intelligence algorithm uses learns the CFD driven data. After the intelligence 
achievement, the AIA could predict the fluid parameters for the infinite number of nodes or dense 
mesh without any limitations. So, there is no need to solve the CFD models for further nodes. This 
study is specifically focused on the genetic algorithm-based fuzzy inference system (GAFIS) to predict 
the velocity profile of the water-based copper nanofluid turbulent flow in a porous tube. The most 
intelligent GAFIS could perform the most accurate prediction of the velocity. Hence, the intelligence of 
GAFIS is tested for different values of cluster influence range (CIR), squash factor(SF), accept ratio (AR) 
and reject ratio (RR), the population size (PS), and the percentage of crossover (PC). The maximum 
coefficient of determination (~ 0.97) was related to the PS of 30, the AR of 0.6, the PC of 0.4, CIR of 
0.15, the SF 1.15, and the RR of 0.05. The GAFIS prediction of the fluid velocity was in great agreement 
with the CFD. In the most intelligent condition, the velocity profile predicted by GAFIS was similar to 
the CFD. The nodes increment from 537 to 7671 was made by the GAFIS. The new predictions of the 
GAFIS covered all CFD results.

There are a number of fundamental theories behind the wall heat transfer enhancement. Disturbing the fluid 
flow, decreasing the thermal boundary layer, changing the fluid thermophysical properties, increasing the heat 
transfer area, etc. are some of the theories that could be resulted in the increase of the rate of heat transfer in the 
wall-bounded fluid flows1–4.

Using the porous media in the internal flows meets some of the mentioned theories for increasing the heat 
transfer rate in the internal flows. The heat transfer enhancement of the heated channels filled by the metallic 
porous media has been confirmed by several studies5–8. For example, Azizifar et al.7,8 discovered more than five 
times heat transfer improvement by using porous media. Open-celled metal foams, as a passive technique for heat 
transfer improvement, could adequately increase heat transfer area without any volume increment9. Moreover, 
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they include other thermal benefits like robust flow-mixing ability, high solid thermal conductivity, low-density. 
Hence, it is effective in compact heat sinks and heat exchangers10,11, solar collectors12, efficient combustors13, 
and chemical reformers14.

Despite the attractive thermal performances for metal foams, further improvements are required for heat 
transfer in metal foams through other assistant approaches in some heat exchangers and electronics with high 
heat transfer rates. The addition of nanoparticles into the base working fluid, known as nanofluid, is such a direct 
technique for increasing the fluid thermal conductivity. The heat transfer enhancement of the nanofluid flow 
has been verified by studies15–17 in different types of applications. For example, Al-Hossainy and Eid18 found a 
significant heat absorption by using nanofluid in a cooling system of a solar cell. Since the heat transfer incre-
ment of the nanofluid was discovered by studies, some works were dedicated to the nanofluids’ heat transfer 
features through porous media5,19–23. The nanofluid, in turn, could improve the heat transfer in the internal 
flows. The insertion of porous media in channels has shown an additional improvement. So, the convective flow 
of nanofluids in metal foam (porous) tubes is an attractive research area for heat transfer application. Heat and 
mass transfer of nanofluids through the porous media was numerically investigated by Agarwal and Bhadauria19. 
In another study, the heat transfer enhancement of a porous channel by the dispersion of the nanofluid in the 
conventional fluid was reported24. Amani et al.25 also found the Nusselt number increment for the convective 
flow of nanofluids in a porous pipe.

Computational fluid dynamics (CFD) modeling of the nanofluid flows in porous media has been commonly 
used by studies26,27 for the prediction of the flow characteristics. However, the CFD method, alone, is not a 
perfect way, especially in complicated cases (e.g. large scale 3 dimension geometries, complex shapes, turbulent 
flows, multiphase flows, etc.). The complicated cases require expensive computational facilities; consume a lot 
of time and effort, etc. The application of artificial intelligence (AI) algorithms has been recently shown by 
some publications28–33. The artificial intelligence algorithm can optimize the CFD approach. Once the govern-
ing equations (i.e., mass, momentum, energy, etc.) are discretized and solved by the CFD methods for several 
specific boundary conditions, the pattern of the CFD predictions can be found by the machine learning of the 
AI. Then, there is no need for CFD anymore. The new predictions of any thermal and hydraulic parameters 
could be done for new boundary conditions or more mesh density. Using the AI algorithm makes us needless 
from solving the complicated governing equations. The fuzzy inference has been previously combined with the 
algorithms of the adaptive network and the ant colony to learn the CFD modeling solutions of the bubbly flow 
in column reactors34,35. But, the deep investigations about the other AI algorithms and the importance of the 
tuning parameters are absent in the literature. In addition, the ability of mesh increment in AI algorithms has 
not been shown in the literature. This study presents the ability of the AI algorithm for mesh increment. For the 
first time, the genetic algorithm in combination with the fuzzy inference is adopted to learn the CFD results of 
the nanofluid flow in a heated porous tube. The parameters of the genetic algorithm and fuzzy inference system 
for the most accurate predictions of the nanofluid velocity are evaluated.

Methodology
Geometry and boundary conditions.  Turbulent convective flow of the water-based copper nanofluid in 
a porous tube is selected for the simulation. The pipe diameter and the length are 10 mm and 1 m, respectively. 
The pipe is under a constant heat flux of 115 kw/m2. The pipe is filled by aluminum porous media with a porosity 
of 0.8 and a pore’s density of 10 PPI (pores per inch). The copper nanoparticles’ concentration is 2% in the whole 
volume of water. The nanofluid is supposed to enter the pipe with the velocity and the temperature of 0.91 m/s 
and 300 °K, respectively.

CFD approach.  Considering steady-state turbulent flow for an incompressible Newtonian fluid, the govern-
ing equations are given as follows36:

Mass:

Momentum:

Energy:

where γ, Cin, and β are the porosity, the inertia coefficient, and the permeability respectively and these parameters 
are calculated as follows27,37–39:
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Aluminum porous media with a porosity of 0.8 and 10 PPI pore density is considered for this investigation. 
The total thermal conductivity is comprised of the effective nanofluid thermal conductivity and that of the solid 
matrix of the aluminum metal porous27,39:

The standard k − ε model is adopted for considering the turbulence effect40–42.

Water‑based copper properties.  For viscosity and conductivity of water-based copper nanofluid, these 
values could be found in the experimental study of Xuan and Li43 for the nanoparticle volume fraction of 2% 
(keff,nf = 0.702 W/m k and ν = 1.125 × 10–6). The following equations are also used for calculating the effective 
density and the specific heat at constant pressure:

(6)dpore = 0.0254(m)/10(PPI)
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Figure 1.   Comparison of velocity profile predicted by CFD from this study and that from Ameri et al.26.
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CFD verification.  The experimental data is not available for the turbulent convective flow of the nanofluid 
water-based in a porous tube. So, the average Nusselt number (Nuave) from this study is compared with the 
experimental results of Xuan and Li for turbulent convective flow of water-based copper nanofluid in a simple 
heated tube. According to experimental results, for the 2% vol. water-based copper nanofluid in the simple tube 
the Nuave is around 80, while this value is enhanced by more than three times to around 288 in the porous tube. 
In addition, the velocity profile of the CFD simulation from this study is compared with that from the numerical 
investigation of Ameri et al.26 for water-based-Fe3O4 nanofluid flow in a heated porous tube (Fig. 1).

Genetic algorithm (GA).  A genetic algorithm is initiated with some preliminary solutions (chromosomes), 
known as a population, which is then evolved into various populations for numerous (normally hundreds of) 
iterations. Ultimately, the algorithm returns the best member of the population as the solution to the problem. 
The evolution procedure proceeds as follows for every iteration or generation. Choosing two members of the 
population is performed in terms of some probability distribution. Then, these two members are integrated 
via a crossover operator for producing an offspring. This offspring is modified with a low probability, then via 
a mutation operator for introducing unknown search space to the population and improving the population’s 
diversity (the degree of difference amongst chromosomes in the population). The offspring is examined to check 
its suitability for the population. When it is proper, a replacement outline is utilized for selecting a member of 
the population and replacing it with the novel offspring. Now, a novel population exists and the evolution pro-
cedure is repeated till meeting definite conditions, for instance, followed by a fixed number of generations. Only 
one offspring is generated by the present genetic algorithm per generation. This is known as steady-state genetic 
algorithm44,45, versus a generational genetic algorithm replacing the entire population or the population’s large 
subset per generation. Adding a local enhancement heuristic, normally after mutation, it is called hybridized 

(12)ρeff ,nf = (1− α)ρwater + αρp,Cu

(13)cp,eff ,nf =
(1− α)(ρcp)water + ϕ(ρcp)p,Cu

(1− α)ρwater + ϕρp,Cu

Figure 2.   schematic of GAFIS method.
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and a GA with this outline is known as a hybrid GA. We will provide a steady-state hybrid GA for the graph 
partitioning problem.

Fuzzy inference system (FIS).  The fuzzy inference method (FIS) is a widely used calculating mechanism 
for fuzzy reasoning, fuzzy set theory, and if–then rules. Automatic monitoring, computer vision, data classifica-
tion, expert systems, and decision analysis all benefitted from it. There are three types of fuzzy logic in which 
Takagi–Sugeno’s if–then rules are implemented in a FIS framework46. The incoming signals are multiplied using 
the AND law. In this case, the i-th rule function can be expressed as follows:

Figure 3.   GAFIS method learning processes with changing in population size (P.S).

Figure 4.   GAFIS method learning processes with changing in accept ratio (A.R).
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In the equation above, wi denotes the firing strength; besides, µAi , µBi and µCi are respectively the incoming 
signals from the MFs that have run on inputs, x-coordinate (X) and y-coordinate (Y).

The relative firing strength value is defined for each rule. Accordingly, the overall firing strengths value for 
all rules can be defined as follows:

(14)wi = µAi(X)µBi(Y)

(15)wi =
wi

∑

(wi)

Figure 5.   GAFIS method learning processes with changing in percentage of crossover (P.C).

Figure 6.   GAFIS method learning processes with changing in cluster influence range (CIR).
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In the equation above, wi represents the normalized firing strength. The function of a consequent Takagi–Sug-
eno’s if–then rule is then applied46.

Therefore, the node function can be expressed as follows:

In the above equation, pi , qi , and si are if–then rules’ parameters, referred to as consequent parameters. The 
output of the model can be achieved by integrating the incoming signals, which represents the result of estima-
tion. These parameters are then updated by employing a hybrid learning algorithm. The gradient descent and 
least-squares estimation (LSE) methods are utilized to respectively update MF and consequent parameters.

(16)wifi = wi(piX + qiY + si)

Figure 7.   GAFIS method learning processes with changing in squash factor (S.F).

Figure 8.   GAFIS method learning processes with changing in reject ratio (R.R).
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Results and discussion
The turbulent convective flow of the water-based copper nanofluid in a porous tube is modeled by the CFD. For 
the boundary conditions, the inlet velocity and temperature of the nanofluid are considered constant, while the 
tube wall is under constant heat flux.

The nanoparticles distribution is supposed to be homogenous and as a result, the single-phase model is 
considered for the mixture of the solid nanoparticles and the based fluid. The finite volume method (FVM) is 
used as the discretization. The ability of mesh increment of the AI algorithm in the prediction of velocity, for 
nanofluid flow in a porous tube is investigated. Increasing the mesh density causes a significant increase in the 
computational efforts by the CFD. But this is done more straightforward by the AI algorithm. The AI algorithm 
predicts the results based on the pattern of the CFD results. This study tries to present the efficiency of the genetic 
algorithm in a combination with fuzzy inference. Figure 2 describes the whole steps from the setup of the GAFIS 
to the predictions of the velocity. The x and y coordinates of the nodes on the cross-section plate (0.4 m from 
the inlet) are the inputs, and the velocity of the nanofluid is the output. Totally, 537 CFD data are available and 
80% of them are used for training during 700 iterations. Since subtractive clustering is used for inertia FIS, the 
parameters such as cluster influence range (CIR), squash factor (SF), accept ratio (AR), and reject ratio (RR) 
must be determined.

In this study, an analysis is done on adjusting the proper values of all subtractive clustering parameters for 
the best intelligence achievement.

Figure 9.   Determination of coefficient in the best GAFIS intelligence when P.S = 30, A.R = 0.6, P.C = 0.4, 
CIR = 0.15, S.F = 1.15, R.R = 0.05.

Figure 10.   Validation of learning process with comparison of prediction data and CFD results.
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Next step, the genetic algorithm (GA) parameters, including the population size, the percent of mutation, 
the mutation rate, the percentage of crossover, and the selection pressure, are defined.

Another sensitivity test is also done for adjustment of the population size and the percentage of crossover, 
while the effects of the remaining parameters of the GA are neglected in this study.

The tuning process for all parameters is stopped, once the highest level of intelligence is obtained. The FIS 
(fuzzy inference system) trains the CFD data based on GA (genetic algorithm); the coefficient of determination 
is recorded for different values of PS, AR, CIR, SF, and RR. In each step of the sensitivity test, the corresponding 
value of the parameter to the highest R2 is adopted. The maximum value of R2 means that the best intelligence of 
the GAFIS. The GAFIS prediction of the nanofluid velocity is validated by the CFD results. After finding the best 
intelligence, the mesh increment is done by the GAFIS. Figures 3, 4, 5, 6, 7 and 8 illustrate the change of R2 by 
adjusting the mentioned tuning parameters. The results released that the maximum R2 values are related to the 
PS of 30, the AR of 0.6, the PC of 0.4, CIR of 0.15, the SF 1.15, and the RR of 0.05. According to Fig. 9, once all 
the best tuning parameters are considered together in the GAFIS, the R2 is equal to 0.97 for the testing process. 
The GAFIS prediction of the nanofluid velocity is in great agreement with the CFD, as shown in Fig. 10. Figure 11 
shows the number of nodes based on the meshing process in the CFD (Fig. 11a) and the increase of the number 
of nodes from 537 to 7671 in the GAFIS (Fig. 11b). Although such mesh increment in the CFD requires a high 
capacity computer (high RAM, graphic card, etc.), this can be done with lower computational infrastructures 
in the GAFIS. Figure 12 illustrates the predictions of the GAFIS for the new nodes. The new predictions of the 
GAFIS cover all CFD results. A few faults are seen near the wall of the pipe. This means maybe more CFD data 
are needed for finding a precise pattern of the fluid velocity near the wall (hydrodynamic boundary layer). 

Figure 11.   (a) CFD nodes which is considered in learning process (537 nodes). (b) Remeshed domain from 
537 to 7671 nodes for prediction.
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Further investigations are suggested for the future to consider the wall effect in artificial intelligence predictions 
of the CFD results.

Conclusions
This study tried to establish an auxiliary approach to remove the barriers of the mesh increment in the CFD 
modeling. The mesh increment in the CFD approach could be time-wasting and overpriced, especially in large 
scales, turbulent flows, complex geometries, etc. So, the 3-dimension CFD modeling of turbulent convective 
flow of the water-based copper nanofluid in a porous tube was selected as a case study. The genetic algorithm in 
a combination with fuzzy inference system (GAFIS) was used for learning the CFD results. The velocity profile 
of the nanofluid was adopted as a variable for assessing the performance of the GAFIS. It was supposed that for 
the intelligence condition, the GAFIS could find the pattern of the CFD results and predict the velocity precisely. 
After achieving the intelligence, the number of nodes could be increased by the GAFIS and the velocity could 
be found for more nodes without any CFD modeling. The tuning process was done for adjusting the parameters 
such as cluster influence range (CIR), squash factor(SF), accept ratio (AR) and reject ratio (RR), the population 
size (PS), and the percentage of crossover (PC). The coefficient of determination (R2) was recorded for different 
values of PS, AR, CIR, SF, and, PC, and RR. The value of R2 would be maximum for the best intelligence of the 
GAFIS. The GAFIS prediction of the nanofluid velocity was validated by the CFD results.

The main findings of this study are as follows.

•	 The most intelligent GAFIS is achieved for the PS of 30, the AR of 0.6, the PC of 0.4, CIR of 0.15, the SF 1.15, 
and the RR of 0.05.

•	 The coefficient of determination is 0.97 at the most intelligent condition.
•	 The GAFIS prediction of the nanofluid velocity was in great agreement with the CFD.
•	 The strong capability of GAFIS for capturing the CFD data and nodes increment was obtained. The nodes 

increment from 537 to 7671 was made by the GAFIS. The new predictions of the GAFIS precisely covered 
all CFD results.

•	 A few faults were found near the wall of the pipe. This could be justified by insufficient data learning near the 
wall. Further investigations are suggested for future studies to analyze the wall effect on artificial intelligence 
predictions.
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