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A B S T R A C T

We consider a multi-period, limited capacity, unsegmented airline pricing model whose solution returns a
sequence of increasing prices based on the order of sale. We show that a positive demand shock corresponding
to an increase in the arrival rate reduces within-period price dispersion and has a minor impact on the
sequence’s maximum prices. Alternatively, upward shifts in customers’ willingness-to-pay lead to higher
maximum prices but do not affect within-period price dispersion. Demand shocks are identified in our sample
by the draw that created the stage groups for the UEFA Euro 2016 soccer tournament. After the draw,
some flights became suitable to transport foreign supporters to the location where matches were scheduled.
Consistent with the theory, a different price behavior is observed between UK and continental European routes.
1. Introduction

On December 12th, 2015, an easyJet ticket for a London-Marseilles
flight scheduled on June 11th, 2016 costed £109. Two days later, on
December 14th, 2015, the price of the same ticket doubled to £221.
Although there may be several possible economic explanations for such
a price hike, in this paper we show that it is due to the demand
shock associated to a large sport event that various French cities hosted
during June–July 2016.

Indeed, on December 12th, 2015 the draw that created the stage
groups of the ‘UEFA Euro 2016’ soccer tournament took place. Fol-
lowing the draw, England became one of the teams playing the match
scheduled in Marseilles on June 11th, 2016. Therefore, England sup-
porters learnt that they could now use the London-Marseilles flight as
a suitable means of transport to reach the stadium.

This example shows that an exogenous shock (the draw) can modify
the firm’s (easyJet’s) set of information on consumers’ preferences and
expected demand for a specific product (the flight), and the firm, taking
into account such a change in the product’s demand conditions, adjusts
its price accordingly. However, following Alderighi et al. (2022) the
subsequent analysis goes beyond the mere identification of a single

✩ We are grateful to Achim Czerny, Xiaowen Fu, Hao Lang, Kun Wang, Anming Zhang, to the seminar participants at the Hong Kong Polytechnic University,
and to the participants of the 2023 ITEA conference in Santander and the 2023 ATRS conference in Kobe. All errors are ours.
∗ Correspondence to: Department of Economics, University of Genova, Via Vivaldi 5, 16126 Genova, Italy.
E-mail address: claudio.piga@unige.it (C.A. Piga).

1 See www.uefa.com/MultimediaFiles/Download/Regulations/uefa/Others/84/03/26/840326_DOWNLOAD.pdf.

price change. When a firm faces uncertain demand and has to sell
multiple but limited units of inventory, we show that the shock leads
to a variation of all units’ prices.

In this paper, we extend the monopolistic multi-period pricing rule
of multiple perishable units to obtain in each period a sequence of
increasing prices in the units’ order of sale; investigating the shape
of the sequence before and after the shock provides a methodology to
detect the nature of the shock.

Our theoretical model shows that a demand shock can consist in
two, possibly coexisting, effects: a change in the customers’ willingness-
to-pay (WTP) and a change in their number (NUM). The underpinning
idea is that the maximum price of the sequence and its dispersion are
differently affected by the nature of the shock: a shift in WTP increases
the maximum price and not the dispersion of the entire sequence; a
shift in NUM reduces the dispersion and has a minor impact on the
maximum price.

These two theoretical predictions are employed to investigate the
airline price behavior during the European soccer tournament ‘UEFA
Euro 2016’. This tournament represents the world’s third largest sport
event, which attracts a very large number of supporters traveling to the
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Economics of Transportation 41 (2025) 100393 
cities hosting the soccer matches from all over Europe and beyond.1
Therefore, the impact on the transport industry is relevant, especially,
n this case, on airlines serving France, the country which hosted the

tournament.
Amongst the airlines operating short-haul nonstop flights to France,

we considered easyJet, one of the leading low-cost carriers in Europe.
Starting from November 2015 onward, we collected daily the fares
of several easyJet’s flights linking different European countries with
rance during the month of June 2016, when the tournament took

place.
Our empirical analysis focuses on the group-stage of the tourna-

ment, which was outlined by the draw on December 12th, 2015 in
Paris. Because our data collection started on the first day of November
2015, we can observe the evolution of the airline fares in the pre-
draw and in the post-draw period. We adopt a Difference-in-Difference
(DID) approach to study how easyJet responded to the demand shock
triggered by the draw.

We find that before the draw the price sequence of the flights af-
ected by the shock (our treated sample) is similar to the price sequence
f the same flights operated on days when no game is scheduled (our
ontrol sample). On the days that follow the draw, the price sequences
f the two groups of flights drastically change: all units’ prices of the
reated flights are lifted up in response to the demand shock, while the
rices of the control flights, which are not subject to the shock, remain
pproximately unaltered.

The fare intervention on the treated flights is, however, heteroge-
eous across routes. After the draw, the price sequence of the flights

from the United Kingdom (UK) to France jumps up but flattens out,
whereas the price sequence of the treated flights connecting three
neighboring countries (Belgium, Italy and Switzerland, heretofore de-
noted as 3N) does not present a significant reduction in price dispersion
and its maximum price shows a much more limited increase. Linking
these findings to our theoretical model, the UK flights exhibit an
increase in both WTP and NUM whereas the 3N flights are mainly
subject to a raise of WTP.

Our analysis over the booking period reveals further interesting
insights. In late spring, when the majority of soccer supporters have
most likely purchased their tickets, the price sequence of the treated
flights regains its usual increasing shape, which implies the return to a
igher extent of price dispersion in a similar way as we observed during
he pre-draw period. Finally, in the proximity of the departure date,

when only few seats remain on sale, price dispersion decreases again
ecause the available seats belong to very few fare classes (Alderighi

et al., 2015; Hortacsu et al., 2024).
Our study is closely related to three main streams of literature.

irst, some recent empirical studies show that observed pricing rules
dopted in the airlines industry differ from the empirical literature
hat studies pricing within frictionless models of a fully rational firm
see, inter alios, Aryal et al., 2023 and Williams, 2022). Alderighi et al.

(2022) and Piga and Alderighi (2024) develop a multi-period revenue
management model where firms cannot adjust prices instantaneously
ue to organizational frictions and technological bottlenecks, e.g., in
ccessing distribution channels. The outcome of the model is a rule
hat assigns a price to each unit of inventory, that is, the sequence of
rices that this study also focuses on. In Alderighi et al. (2022) the

use of sequences is independent of the market structure, while Piga
and Alderighi (2024) emphasizes the stability over time of the se-
quences. Hortacsu et al. (2024) document, using data and operational
insights from a large U.S. airline, the systematic use of a pricing
heuristic that relies on inputs provided by different organizational
epartments; such a practice leaves room for possible miscoordination

whose costs are counterbalanced by the relative simplicity and low
omputational burden of the adopted heuristic, known as the Expected
arginal Seat Revenue-b (Belobaba, 2009; Phillips, 2005).

Second, from a theoretical viewpoint, under conditions that typ-
ically characterize the airline market, namely demand uncertainty,
2 
limited capacity, and product perishability, Dana (1999) derives a
single-period equilibrium in distribution that is qualitatively similar
o the price sequences in this study: every capacity unit is assigned

a price that increases in the order of sale. In addition to providing
n empirical representation of the fare sequences, this study differs

from Dana (1999) as it proposes a multi-period theoretical model that
explicitly deals with two opposing forces on prices: the positive effect
due to capacity scarcity vs. the negative one induced by capacity
perishability, which becomes stronger as the reservation period nears
its end.2 Alderighi et al. (2015), using standard regression methods on
European airline data that include the number of seats available when
 price was posted online, test and find support for the main prediction
n Dana (1999). Both theoretical and empirical considerations thus
uggest that when it is not possible to control for capacity effects, a
ere increase in fares over time cannot be automatically ascribed to an

intertemporal price discrimination motive, which operates as another
pward force on prices (see Siegert and Ulbricht, 2020 for an example).

By the same token, previous studies on price dispersion in airline
markets have largely focused on its relationship with market structure
that only indirectly captures the impact of capacity (Borenstein and
Rose, 1994; Gaggero and Piga, 2011; Gerardi and Shapiro, 2009). This
study proposes a complementary source of intra-firm price dispersion
that is directly related to the way the company manages the price
sequences over time. The theoretical mechanism we present thus sheds
ome light on the empirical findings in Orlov (2011) that reports an

increase in intra-firm dispersion after the Internet became a crucial
distribution system.

Third, there are various instances and different industries showing
hat firms respond to a demand shock.3 Gagnon and López-Salido

(2020) show that large demand shocks caused by mass population
displacement, snowstorms and hurricanes trigger a negative, but weak,
rice response in U.S. supermarkets. A weak price response to negative
emand shocks has been also documented in airline transport (Bilotkach

et al., 2012). In the same industry, Gaggero and Luttmann (2022)
find that major U.S. carriers responded to COVID-19 by discounting
ares and decreasing the price dispersion, while in a study on the
odal competition of high-speed rail versus air transport, Wei et al.

(2017) find that demand shocks have a larger impact on low-cost or
regional carriers, on tourism routes, and on flights that depart in the
evening. Berman et al. (2019) show that young exporters respond to
a demand shock more intensively than more established firms. Baker
(1989) and Menezes and Quiggin (2022) relate the intensity of the reply
to the level of market power, showing that price response to inflation-
ry demand shocks is larger in more concentrated markets. Kwapil et al.

(2010), however, find an opposite result.
Another key aspect of the firm’s reply to demand shocks is the speed

f adjustment, which can be affected by market rigidities as well as by
the availability of the information (Hall and Fields, 1987). Balvers and
Cosimano (1990) show that a firm with no clear information on the size
of the shock may prefer to slowly adjust its prices to avoid the risk of
inducing additional noise which may ultimately obstruct the learning
process. In another study based on the EURO16 event, Nicolini et al.
(2023) find that hotel prices were largely unresponsive to the draw on

2 Dana (1999) considers only the capacity effect. Both studies assume
re-commitment of the solution strategy.

3 In some industries the price adjustment is not the main consequence
of a demand shock. For example, Copeland and Hall (2011) show that in
the short-run car producers only modestly respond with changes in price
since they prefer to raise/lower the level of production or allow inventories
to accumulate/decumulate. With respect to the inventory decisions, Tokar
et al. (2014) find that managers tend to overreact when they are faced
with the uncertainty of demand shocks. Demand shocks may affect the entry
and exit decision of firms (Lim et al., 2022); their productivity and trading
decisions (Bai and Ríos-Rull, 2015); and their investment decision (Angeletos
and Lian, 2022).
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December 12th, 2015; they show that Paris hotels initially applied the
same room rates on the dates when matches were scheduled and that
this price uniformity broke down to reflect differing occupancy rate
on those dates. The present study highlights the company’s ability to
alter its pricing rules selectively on those routes directly affected by
the demand shock, although the extent and the speed of its intervention
varies by routes’ characteristics.

This paper continues as follows. The next section presents a theo-
retical model of airline pricing and shows how a monopolistic airline
eacts to a demand shock. Then, the paper tests the theoretical insights.
ection 3 illustrates the data collection process and the main sample

characteristics. A brief descriptive analysis is presented in Section 4,
which paves the way for the subsequent analysis that, in Section 5
describes the econometric model and in Section 6 discusses the results.
ection 7 concludes.

2. Pricing under demand shocks

This section extends the model presented in Alderighi et al. (2022)
y accounting for a demand shock consisting in an unexpected upward
hift of both the prospective number of consumers (NUM) and their
illingness to pay (WTP). To fit the empirical applications, the model

efers to the airline market, although the setup is sufficiently general to
e applicable in many other industries adopting revenue management
ractices (e.g., hotel, car rental, train, long-distance bus, entertainment
nd sports).

A monopolistic airline sets fares for a flight with capacity of 𝑁 > 1
omogeneous seats over 𝑇 ≥ 1 periods before departure. Let 𝑡 identify
he remaining number of periods to departure, with 𝑇 ≥ 𝑡 ≥ 1, and
= 0 the take-off day. At each 𝑡, consumers ℎ = 1, 2,… ,∞ arrive

equentially: the probability that at 𝑡 the first consumer shows up is
1,𝑡 ∈ (0, 1), and that consumer ℎ + 1 shows up, conditional on the fact

hat consumer ℎ has already appeared, is 𝜑ℎ+1,𝑡 ∈ (0, 1). The arrival
rocess (i.e., NUM) within the same time period is memoryless, i.e.,
or any ℎ and 𝑡, 𝜑ℎ,𝑡 = 𝜑𝑡 ∈ (0, 1), and the conditional probability of
rrivals may increase over time, i.e., 𝜑𝑡′ ≥ 𝜑𝑡 with 𝑡′ < 𝑡.

Consumer (ℎ, 𝑡) is myopic with a WTP denoted by a random variable
𝜃ℎ,𝑡, with (right-continuous) cumulative distribution 𝐹ℎ,𝑡 on the support
𝛩, with 𝜃 = inf 𝛩 > 0 and �̄� = sup𝛩 < ∞.4 Moreover, consumers
rriving at the same time period 𝑡 share the same ex-ante evaluation,
ℎ,𝑡 = 𝐹𝑡, and consumers arriving later may have higher WTP, i.e., 𝐹𝑡′ ≤
𝑡 with 𝑡′ < 𝑡.

The probability of selling the first available seat at the fare 𝑝 at time
period 𝑡 is:

𝑞𝑡 (𝑝) = 𝜑𝑡
(

1 − 𝐹𝑡 (𝑝)
)

∞
∑

ℎ=0

(

𝜑𝑡𝐹𝑡 (𝑝)
)ℎ =

𝜑𝑡
(

1 − 𝐹𝑡 (𝑝)
)

1 − 𝜑𝑡𝐹𝑡 (𝑝)
∈ [0, 1] , (1)

where 𝜑𝑡
(

1 − 𝐹𝑡 (𝑝)
)

is the probability that consumer ℎ shows up and
uys at fare 𝑝 in time period 𝑡, provided that consumers 1,… , ℎ− 1 have

previously not purchased at the same price in the same time period; and
(

𝜑𝑡𝐹𝑡 (𝑝)
)ℎ is the probability that consumers 1 to ℎ showed up and did

not buy in time period 𝑡.
The following Bellman equation summarizes the firm’s revenue

maximization problem:

𝑉 (𝑡, 𝑀) = max
𝑝∈𝛩

{

𝑞𝑡 (𝑝) [𝑝 + 𝑉 (𝑡, 𝑀 − 1)]

+
(

1 − 𝑞𝑡 (𝑝)
)

𝑉 (𝑡 − 1, 𝑀)
}

, (2)

with boundary conditions 𝑉 (𝑡, 0) = 0 and 𝑉 (0, 𝑀) = 0, for any 𝑡 ∈
{0,… , 𝑇 } and 𝑀 ∈ {0,… , 𝑁}.

4 This assumption guarantees the existence of a solution of the problem.
Moreover, note that the random variable 𝜃ℎ,𝑡 can be one of continuous, discrete
or mixed type.
3 
Eq. (2) encompasses the trade-off of either selling at least one seat
at time 𝑡 and gaining 𝑝 plus the revenue flow stemming from the re-
maining seats, 𝑉 (𝑡, 𝑀 − 1), or freezing the capacity and postponing the
ntire sale to the next time period, which implies gaining 𝑉 (𝑡 − 1, 𝑀).

The solution to the model determines, in any period, a sequence
of ascending fares based on the order in which each seat is sold (see
Proposition 2 in Alderighi et al., 2022). Since in the present paper we
onsider a more general setup than in Alderighi et al. (2022) (i.e., WTP

and NUM may be increasing over time), the optimal fare for each seat
over the booking period is no more strictly monotonic.

Because 𝑞𝑡 depends on the WTP and NUM in each booking period (𝐹𝑡
and 𝜑𝑡, respectively), the model can shed light on how a demand shock
(i.e., a variation in such variables) affects the shape of the optimal fare
equence.

We focus our attention to an expected shock occurring at period
= 𝑇 ∈ {1, �̄� } and we evaluate how prices modify from this period
nward, i.e., 𝑇 , 𝑇 − 1,… , 2, 1. Indeed, as the shock unfolds only in 𝑇 ,
he set of optimal fares before 𝑇 , i.e. {𝑝𝑡,𝑚 | 𝑇 + 1 ≤ 𝑡 ≤ �̄� , 1 ≥ 𝑚 ≥ �̄�},
emains unchanged. In Proposition 1, we, therefore, limit our analysis

to the set of fares which could be potentially affected by the shock.

Proposition 1. Let 𝐹 be a continuously differentiable and bounded
function with support 𝛩 = [𝜃, 𝜃], with 0 ≤ 𝜃 < 𝜃 < ∞. Assume that
𝑡 ∈ {0, 1, 2,… , 𝑇 − 1, 𝑇 }; 𝑚 ∈ {0, 1, 2,… , 𝑀 − 1, 𝑀}, with 𝑇 > 1 and
𝑀 > 1; and that the unexpected positive demand shock occurs at time 𝑇 .
Define the optimal price of seat 𝑚 at time 𝑡 as 𝑝𝑡,𝑚; the sequence of optimal
prices of length 𝑚 ≤ 𝑀 at time 𝑡 ≤ 𝑇 as 𝑆𝑡,𝑚 = {𝑝𝑡,𝑚, 𝑝𝑡,𝑚−1,… , 𝑝𝑡,1}; and
the coefficient of variation of the optimal price sequence 𝑆𝑡,𝑚 as 𝐶 𝑉𝑡,𝑚 =
𝜎𝑡,𝑚∕𝜇𝑡,𝑚, where 𝜎𝑡,𝑚 and 𝜇𝑡,𝑚 are, respectively, the standard deviation and
the mean of the optimal sequence of prices 𝑆𝑡,𝑚. Let tilde (‘‘ ̃ ’’) denote the
same variables after the shock at time 𝑇 .

A. If a positive and unexpected shock in WTP occurs, i.e., 𝐹 (𝑥) =
𝐹 (𝑥∕𝛼), with 𝛼 > 1, then �̃�𝑡,𝑚 = 𝛼 𝑝𝑡,𝑚 > 𝑝𝑡,𝑚 and 𝐶 𝑉 𝑡,𝑚 = 𝐶 𝑉𝑡,𝑚;

B. if a positive and unexpected shock in NUM occurs, i.e., �̃� = 𝛽 𝜑, with
𝛽 > 1 and �̃� ≤ 1, then under mild conditions, �̃�𝑡,𝑚 ≥ 𝑝𝑡,𝑚;

C. if a positive and unexpected shock in NUM occurs, i.e., �̃� = 𝛽 𝜑, with
𝛽 > 1, �̃� ≤ 1, and 𝜑 and/or 𝛽 are sufficiently large, for any 𝑡 and
𝑚, �̃�𝑡,1∕𝑝𝑡,1 < �̃�𝑡,𝑚∕𝑝𝑡,𝑚 and 𝐶 𝑉 𝑡,𝑚 < 𝐶 𝑉𝑡,𝑚.

Proof. See Appendix A.1. ■

An increase in WTP, therefore, determines a proportional shift of
all prices of the sequence upward and no change in fare dispersion,
whereas an increase in NUM has larger effects on the lower prices of
the sequence and lower effects on the higher prices of the sequence,
eading to a reduction in dispersion.

These results are illustrated in Fig. 1, with panel (a) containing the
aseline case with stable demand, which provides the term of reference
or the other panels in the Figure.5 Panels (b)–(d) describe how a
hange in, respectively, NUM, WTP or both can affect the sequence of
ares. We split the booking period in two stages: an early stage, denoted
y 𝑡 ∈ {5,… , 8}, where demand is stable and a late stage, denoted by

𝑡 ∈ {1,… , 4}, where a positive demand shock occurs.6

5 In the baseline case: 𝑁 = 20, 𝑡 = {1,… , 8}, 𝐹𝑡(𝑝) = min{80(1.1228 −
0.04𝑡)∕𝑝, 1}, 𝜑𝑡 = 0.85 − 0.005𝑡. Hence, the expected average demand, 𝑄, is
linear and equal to 𝑄 = 40 − 0.5𝑝, implying that the quantity is 20 and the
price is 40 where the demand elasticity is unitary. Expected demand increases
by 4 percent in WTP and NUM in each time period (time index is in the reverse
order) to better reflect the fact that in airline markets travelers with higher
willingness to pay tend to book later.

6 In the early stage, consumers’ average arrival rate is �̂� = 0.83 and 𝐹𝑡(𝑝) =
min{80(1.1228 − 0.04𝑡)∕𝑝, 1}. In the late stage, either the expected number of
arrivals (NUM) increases to �̂� = 0.91 or the willingness-to-pay (WTP) shifts
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Fig. 1. Simulated fare sequence, with and without demand shocks.
Note that an increase in NUM has a major effect on lower fares,
while an increase in WTP has a uniform effect on all fares. Finally, the
overall effect amplifies when both shocks occur simultaneously.

Fig. 2 shows the impact of a change in the expected number of
arrival (NUM) and in their willingness to pay (WTP) on the minimum
price (𝑝), maximum price (𝑝) and coefficient of variation (𝐶 𝑉𝑡).7 It
clearly depicts the main results in Proposition 1 in terms of how
different shocks impact on the distribution of fares. In particular, a
change in WTP has no effects on the coefficient of variation, whereas a
change in NUM increases the minimum fare proportionately more than
the maximum fare and thus reduces the coefficient of variation.

3. Data collection and sample characteristics

As in Alderighi et al. (2022), data were scraped from the internet
using a web crawler. On a daily basis, the crawler automatically
connected to the web site of easyJet and issued queries specifying the
route, the date of departure, and the number of seats to be booked. The
data collection explicitly aimed at recovering the fare sequence of each
flight stored on the carrier’s web reservation system. To this purpose,
for each flight and departure date, the crawler started by requesting
the price of one seat, and then continued by sequentially increasing
the number of seats by one unit. The query stopped at 40 seats, which
corresponds to the largest possible number within a single query, or
at a smaller number of seats if the remaining seats on sale were

upward to 𝐹𝑡(𝑝) = min{100(1.1228 − 0.04𝑡)∕𝑝, 1} or both. Each case thus denotes
a linear demand with, respectively, quantity equal to 40 and 20 and price to
40 and 50, where the demand elasticity is unitary.

7 We use the same parameters of Fig. 1. We focus on the sequence of fares
at time 𝑡 = 4. The changes in NUM and WTP correspond, respectively, to a
positive shift in the expected number of travelers from 20 to 40 and in their
maximum willingness-to-pay from 40 to 50, where the demand elasticity is
unitary.
4 
less than 40.
To select the flights, the following French airports were chosen as

they are located in the same cities hosting matches and easyJet was
operative: Bordeaux, Nice, Lille, Lyon, Nantes, Paris CDG and Toulouse.
The data collection covers 28 bi-directional routes, of which 6 domestic
and 22 international, linking the French airports with 12 European
nations.8 Most of the fares were retrieved in Euro and the non-Euro
fares were converted to Euro using the daily exchange rate provided
by Eurostat.9

The sampled flights departed within the dates June 1th and June
24th, 2016: as the first match was played on June 10th, the sample
therefore includes a pre-tournament period. The fare collection started
on November 1th, 2015, approximately seven and a half months before
the beginning of tournament, and forty-two days before the draw on
December 12th, 2015 that determined the identity of the teams playing
in each city. Overall, we tracked a total of 546 flights until their
departure date, or earlier if the flight sold out. It is thus possible to
construct a sample containing both flights which could be potentially

8 Routes: Amsterdam-Nice, Belfast-Bordeaux, Belfast-Paris(CDG), Belfast-
Nice, Berlin(SXF)-Nice, Bordeaux-Lille, Bordeaux-Lyon, Brussels-Bordeaux,
Brussels-Nice, Budapest-Paris(CDG), Budapest-Geneva, Geneva-Lille, Hamburg-
Nice, Lille-Nice, Lille-Toulouse, Lisbon-Lille, Lisbon-Paris(CDG), London(LGW)-
Lyon, London(LGW)-Marseille, London(LGW)-Paris(CDG), London(STN)-Nice,
Lyon-Nantes, Madrid-Lyon, Madrid-Paris(CDG), Naples-Lyon, Paris(ORY)-
Toulouse, Prague-Paris(CDG), and Rome(FCO)-Lyon. Nations: Belgium, Czech
Republic, Germany, Hungary, Italy, Netherlands, Northern Ireland, Portu-
gal, Spain, Switzerland, England and Northern Ireland, of which only the
Netherlands did not participate in the tournament.

9 We used the series ‘Former euro area national currencies vs. euro/ECU’
downloaded from https://ec.europa.eu/eurostat/web/exchange-and-interest-
rates/data/database. The missing data on weekends or national holidays,
when financial markets are closed, are filled with the previously available
observation. The non-Euro currencies of our sample are the British Pound,
the Czech Crown, the Hungarian Forint, and the Swiss Franc.

https://ec.europa.eu/eurostat/web/exchange-and-interest-rates/data/database
https://ec.europa.eu/eurostat/web/exchange-and-interest-rates/data/database
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Fig. 2. Minimum price, maximum price, and coefficient of variation as a function of NUM and WTP.
used by supporters to attend a match involving their national team and
flights that were not affected by the tournament. A flight is classified
as ‘treated’ if it links a foreign country to the French host city within
a −∕+ two-day range from the date of the soccer match involving that
country. More specifically, we take incoming flights from two preceding
days until the day of the match, and the next two days after the match
for the return flight.10

Table 1 reports the matches with the corresponding routes of the
flights included in the treatment group. These flights are associated
with nine group-stage soccer matches, which involve the national teams
of three neighboring countries of France (Belgium, Italy and Switzer-
land), henceforth referred as 3N, and two national teams from the
United Kingdom (England and Northern Ireland), henceforth referred
as UK.

As we focus on the group-stage of the tournament, the sample
includes 52 treated flights for a total of 8,464 observations. Note that
the selected matches are played between June 11th and June 22th,
meaning that all the treated flights depart within the same narrow
period of less than a fortnight length. This feature ensures that these
flights are subject to the same, if any, seasonal effect.

Another reason to consider the group-stage of the tournament is
the fact that the draw pairing the qualified teams and designating
the group-stage matches took place on December 12th, 2015. Since
the tournament started on June 10th, 2016, the demand shock due
to UEFA Euro 2016 occurs six months before the flights’ departure;
that time represents a stage of the booking period when fares are
usually very stable across subsequent booking days, so that we can
most likely ascribe any fare variation to the sole effect of the demand
shock induced by the draw (see also Nicolini et al., 2023 for hotel

10 On the day of the soccer match the incoming flight is considered treated
if its scheduled landing time is no later than 5 h before the beginning of the
soccer match to allow the supporters enough time to reach the stadium before
the kick-off.
5 
prices). To put it differently, the draw did not occur in the late booking
period, when fares typically soar simply because of intertemporal price
discrimination (Alderighi et al., 2016), so with our data we are able to
confine the effect of the demand shock when we expect nothing else
to happen, and any fare change that we observe after December 12th,
2015 is arguably attributable to the group-stage draw.

As far as the control group is concerned, the richness of our data
allows us to consider two alternatives. The first possibility is to take the
same flight code of each treated flight and select the flight that departs
one week earlier than the treated flight. We will refer to this alternative
as the ‘previous-week’ control group, or simply, previous-week group.
One advantage of this group is to pair (and compare) flights that exactly
share the same features in terms of origin and destination, departure
and arrival time, day of the week of departure, season of the year, etc.,
except for the departure date, which, however, is only seven-day distant
from the other.11

The second alternative for the control group is to consider all
the flights in our dataset that takeoff before the beginning of the
tournament, or, more precisely, before June 9th, when our first treated
flight is observed. For the sake of the exposition, we will refer to this
control group as ‘pre-tournament’ group. It is worth mentioning that
this control group is based on flights which serve all the 28 routes
of our collected sample. As we stated earlier, these routes are both
domestic and international, and cover a total of 12 European countries
including France (see footnote 3). In this way, the pre-tournament
group represents an overall and broad group of flights aiming to reflect
the general pricing strategy of easyJet under normal condition. Again,
since the pre-tournament group includes flights departing within the
period June 1th and June 8th, any seasonality effect on fares, if it exists,
will be the same across all flights.

11 This idea is consistent with Alderighi et al. (2015) and Bilotkach et al.
(2015) who used past-week flights to instrument current flights.
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Table 1
Sampled group-stage games with corresponding routes and national teams.

Date of match Group-stage game Route National team Cluster

June 11th, 2016 Albania-Switzerland Geneva-Lille Switzerland 3N
June 11th, 2016 England-Russia London(LGW)-Marseille England UK
June 12th, 2016 Poland-Northern Ireland Belfast-Nice Northern Ireland UK
June 13th, 2016 Belgium-Italy Naples-Lyon Italy 3N
June 13th, 2016 Belgium-Italy Rome(FCO)-Lyon Italy 3N
June 18th, 2016 Belgium-Republic of Ireland Brussels-Bordeaux Belgium 3N
June 19th, 2016 Switzerland-France Geneva-Lille Switzerland 3N
June 20th, 2016 Slovakia-England London(LGW)-Lyon England UK
June 21th, 2016 Northern Ireland-Germany Belfast-Paris(CDG) Northern Ireland UK
June 22th, 2016 Sweden-Belgium Brussels-Nice Belgium 3N
f
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The two aforementioned alternatives for the control group have
their own pros and cons. On the one hand, the previous-week group
satisfies an important requirement for the choice of the counterfactual
sample, since each treated flight is matched with its same flight service
offered one week before. On the other hand, the pre-tournament group
offers a more generalized term of comparison as it captures the pricing
approach adopted by easyJet over a wider portion of its network.
Indeed, whereas the previous-week group includes 6,968 observations,
the size of the pre-tournament sample is almost nine times bigger
61,339 observations). We present evidence using both samples. The
ain analysis of this paper will be conducted using the previous-week

lights as control group, while the robustness checks will be based on
he pre-tournament flights.

4. Descriptive analysis

Fig. 3 shows the box plot of the fare sequence of four different
flights. Each box shows the minimum, the 25th percentile 𝑃 𝑐25, the
median (the internal horizontal line), the 75th percentile 𝑃 𝑐75 and the
maximum price of the sequence posted on each day of December 2015,
with the vertical dashed line denoting the day of the draw. Finally,
he solid line represents the coefficient of variation, computed as the

standard error of the fare sequence divided by its mean.
The two left panels in Fig. 3 depict two treated flights: the one

n top is from the United Kingdom (UK-route cluster); the bottom
ne from Belgium (3N-route cluster); the right panels refer to the two
orresponding flights from the previous-week control group.

Prior to the draw, the interquartile range (i.e., the distance between
the 75th and 25th percentiles), which is denoted by the height of the
gray boxes, is observable in all the panels, implying that all four flights
were priced using an ample range of fare classes.

After the draw, we observe two different effects on the treated
lights. The interquartile boxes of the UK flight quickly disappear, as
he fare sequence collapses and all seats are assigned to two or three
are classes of higher level than before. By contrast, the interquartile
oxes of the 3N flight are maintained but shifted up. The coefficient
f variation, which represents a measure of fare dispersion, reduces in
oth treated flights, but the drop is drastically larger for the UK one.

It is noteworthy that the fare sequences of the control flights do not
exhibit any change after the draw.

Based on the predictions of the theoretical model, we can inter-
pret these graphical findings as follows: after the draw, the airline
nticipated an increase in both WTP and NUM for the UK flight,
hereas for the 3N flight only an increase in WTP, but no drastic

ncrease in the number of consumers. This could be due to the fact
hat Belgian supporters could substitute flights with alternative means
f land transport, an option not available to British travelers.

Last, but not least, it is worth pointing out that the fare adjustment
did not occur exactly on the day after the draw; moreover, it was not
even simultaneous across all the treated flights. Although Fig. 3 only
considers two flights, it well generalizes the behavior of the treated
lights in our sample: some flights were updated on December 14th,
 l

6 
2015, whereas for others the fare sequence change took longer to
manifest. Hortacsu et al. (2024) provide a possible explanation based
on organizational frictions. Note that the draw was held in Paris on
Saturday, December 12th, 2015 at 6 pm local time. It ended about a
couple of hours later, when the Revenue Management (RM) office of
easyJet was probably closed, and likely stayed so (or at least not fully
operative) on the next day, Sunday. When normal working activities
resumed on the Monday morning, Revenue Managers assigned a higher
priority to the decision on how to adjust the fare sequences of the
UK flights, likely because of their lower product substitutability. One
possible reason why the airline did not devote more resources to
implement changes over the weekend or soon thereafter is probably
due the fact that only a small number of supporters would book a flight
or a hotel room before securing a ticket for the entrance to the match’s
stadium (Nicolini et al., 2023).

5. Econometric model

We adopt a modified DID approach where, instead of splitting the
time horizon into two categories of fares observed before and after
the draw, a single dummy variable for each query date is used. More
precisely:

𝑌𝑖𝑡 =
𝑛−1
∑

𝑡=1
𝛼𝑡𝑄𝑢𝑒𝑟𝑦𝐷 𝑎𝑡𝑒𝑡 +

𝑛−1
∑

𝑡=1
𝛽𝑡(𝑄𝑢𝑒𝑟𝑦𝐷 𝑎𝑡𝑒𝑡 ⋅ 𝑇 𝑟𝑒𝑎𝑡𝑒𝑑𝑖) + 𝜌𝑖 + 𝜖𝑖𝑡. (3)

Each of the n-1 𝑄𝑢𝑒𝑟𝑦𝐷 𝑎𝑡𝑒 dummy variables represents a date of the
are query 𝑡, where 𝑛 is the total number of daily observations col-
ected for each flight 𝑖. The variable 𝑇 𝑟𝑒𝑎𝑡𝑒𝑑 is a dichotomous variable

equal to one if the flight 𝑖 belongs to the treatment group and to
zero otherwise. The interaction 𝑇 𝑟𝑒𝑎𝑡𝑒𝑑 ⋅ 𝑄𝑢𝑒𝑟𝑦𝐷 𝑎𝑡𝑒, therefore, takes
he value one when the flight is treated and observed on a specific
uery date. The coefficients 𝛽’s measure the average difference of the
ependent variable between treated and control flights, on each query
ate. They should be positive and significant if the post-draw shock led
o a modification of the fare sequence in treated flights only. Such a
pecification allows us to observe how the impact of the shock evolves
ver time, especially in the post-draw period when the effect of the
hock may not remain constant over time. The estimation controls for
light fixed-effects 𝜌; 𝜖 is i.i.d. with zero mean.

To test that the shock impacts the entire fare sequence and not
nly the lowest available fare, the dependent variable 𝑌𝑖𝑡 for flight 𝑖

at time 𝑡 before departure assumes five alternative values: the lowest
vailable fare, 𝑃 𝑚𝑖𝑛, corresponding to the first seat in the sequence for

sale; the twenty-fifth percentile of the fare sequence, 𝑃 𝑐25; the seventy-
fifth percentile of the fare sequence, 𝑃 𝑐75; the highest observable fare,
 𝑚𝑎𝑥; and the coefficient of variation of the observed fare sequence,
 𝑉 , which is measured as the ratio between the standard deviation of

he fares in the sequence and their mean value. Significant differences
n values between the first four variables would indicate that the airline
tored a fare sequence on its reservation site, i.e., that each seat is
rogressively assigned to an increasing fare class (Alderighi et al.,

2022). The coefficient of variation measures instead how dispersed the
ares in a sequence are. Finally, standard errors are clustered at flight
evel.
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Fig. 3. Distribution of values (left vertical axis) and Coefficient of Variation (right vertical axis) of fares in observed sequences.
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6. Results

Given the long time-horizon of our estimation (November 2015
to June 2016), the regressions we estimate include more than seven
months of daily dummies 𝑄𝑢𝑒𝑟𝑦𝐷 𝑎𝑡𝑒 and therefore reporting all the
estimates in a table would be too complex and hard to read and
interpret. For this reason, we opted for a graphical representation of
the results obtained by calculating and plotting the predicted values of
Eq. (3) - for a similar approach, see Lacetera et al. (2024).

6.1. Results immediately before and after the draw

Fig. 4 displays the predicted values of Eq. (3) obtained using the
entire sample of control and treated flights. Both panels focus on the
month of December 2015 to get a closer look at how the samples of
treated and control flight behave just before and after the draw.

The left panel shows the predicted values of the four fare classes
considered as dependent variables (𝑃 𝑚𝑖𝑛, 𝑃 𝑐25, 𝑃 𝑐75, and 𝑃 𝑚𝑎𝑥); the
ight panel shows the predicted coefficient of variation. The values of
he treated flights are represented by the solid lines, while the dotted
ines refer to the control flights. In the left panel the same color is
sed to identify the same dependent variable in both samples; so, for
xample, the red color identifies 𝑃 𝑚𝑎𝑥. To enhance clarity, the figure
oes not show the confidence intervals, which are generally very small,
nd point towards significant differences among the curves.

Notice that during the pre-draw period the fares and the coefficient
f variation of both the treated and the control flights follow a similar
emporal pattern. Indeed, the solid and the dotted lines tend to overlap

extensively. That is, before the draw the dependent variables not only
move in parallel in both groups, but also take similar values (recall that
the sample includes flights with the same identifying codes). Having
established a common pre-shock trend, we can proceed to evaluate the
 l

7 
impact of the shock induced by the draw on the treated flights.
The left panel of Fig. 4 point to the following results. First, all

he fares of the treated flights jump up after the draw, whereas those
f the control group continue to retain similar pre-shock values. For
nstance, 𝑃 𝑚𝑖𝑛 moves from an average value of about 60 in the pre-
raw period to 150 just a few days after the draw. 𝑃 𝑐25, 𝑃 𝑐75, and
 𝑚𝑎𝑥 exhibit similar sharp increments. It appears, therefore, that the
irline responded to the shock by shifting up the fare sequences of all
reated flights.

Second, such an adjustment was not instantaneous, but took a few
days to complete. Indeed, the predicted prices the day after the draw
tend to be similar to the preceding ones, and noticeable increment only
appear on December 14th, 2015.

Third, the distance between 𝑃 𝑚𝑖𝑛 and 𝑃 𝑐25 becomes wider after the
raw, while the distance between 𝑃 𝑚𝑎𝑥 and 𝑃 𝑐75 shrinks. This finding
ndicates that the fare sequence after the draw is skewed to the left,
ith more seats allocated to the highest fare classes. Moreover, the fact

hat the 𝑃 𝑐75 curve is very close to the 𝑃 𝑚𝑎𝑥 curve suggests that more
eats are assigned to a smaller number of higher fare classes, implying
hat the fare sequence distribution exhibit a thicker right tail. This
esult is consistent with the top-left panel of Fig. 3 shown previously.

Fourth, the fact that in the post-draw period the fare sequence is
ased on a limited number of fare classes determines a lower fare

dispersion. This result is showed in the right panel of Fig. 4, where
the average value of the coefficient of variation of the fare sequences
in treated flights declines noticeably after the draw.

6.2. Results by subsamples

To capture possible differing patterns of travel mode substitutabil-
ty, we split our sample in two groups: one comprising the flights
inking France to the UK (UK routes) and another gathering the flights
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Fig. 4. Predicted fares and coefficient of variation in December 2015.
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linking France to its three neighboring countries (3N routes) in main-
and Europe. The former group of flights is characterized by a lower

substitutability with other means of transport, which are more expen-
sive and inconvenient for passengers from an island. Thus, it is likely
that on UK routes the airline could enjoy a significant market power,
leading to large price post-shock increments. Conversely, the 3N routes
share a physical border with France and thus ground transportation rep-
resents a credible alternative to air transportation that may potentially
limit the impact of the shock.

As the panels (a) and (c) of Fig. 5 show, fares were more reactive
n the UK routes than on 3N routes. Although both samples exhibit

significant shifts upward of all prices, they are much steeper on UK
routes; moreover, after the draw 𝑃 𝑐75 on UK routes approximately
overlaps with 𝑃 𝑚𝑎𝑥, while 𝑃 𝑐25 is equally distant from 𝑃 𝑐75 and from
 𝑚𝑖𝑛, meaning that the fare sequence is very skewed to the left, with
nly few and high fare classes available.

Relatedly, the right panels show a quick and significant drop of the
coefficient of variation only on the UK routes after the draw, while
he coefficient of variation of the treated flights on 3N routes is more
luggish to fall and generally does not differ drastically in magnitude
rom that in the control sample. In terms of theoretical predictions in

Proposition 1, these findings suggest that the UK routes of our sample
experienced an increase in both WTP and NUM, whereas the 3N routes
were mainly subject to an increase in WTP.

6.3. Results over the full booking period

The analysis so far has focused on the month of December 2015
o get a closer look at the airline’s behavior just a few days before

and after the draw. However adjustments of the fare sequences also
ccurred in the following months. Shifting the attention to the entire
ost-draw booking period, which is depicted in Fig. 6, reveals further
nteresting insights.

The pattern of the treated flights on UK routes after the draw
roadly identifies three subperiods:

• subperiod A (draw-date to March 2016) where treated fare se-
quences rise after the draw and remain at the highest levels;

• subperiod B (April 2016 to early-May 2016) where fares tend to
decline, although they remain at levels much higher than in the
control group;
8 
• subperiod C (mid-May 2016 to June 2016) where fares increase
again.12

In contrast, on 3N routes during the subperiods A and B fares
show an upward trend relative to the December-2015 period, which
suggests that it took longer to fine-tune the structure of the sequences
of the flights involved. Notably, from mid-January 2016 the difference
between 𝑃 𝑐75 and 𝑃 𝑚𝑎𝑥 shrinks whereas that between 𝑃 𝑚𝑖𝑛 and 𝑃 𝑐25
expands, leading to a fall in the coefficient of variation that was not
bserved in December 2015. The equivalent fares in the control flights
o not exhibit any such behavior and continue to remain at significantly
ower levels. Overall, the analysis of the full booking period for the
reated flights in 3N routes suggests that, although with a delay and to
 smaller extent relative to the UK routes, the increase in NUM may
ave also played a role in shaping the sequences.

Relatedly, during January–March 2016 the tournament organizer,
EFA, had made arrangements that finalized the purchase of stadium

tickets through a specialized website (Nicolini et al., 2023). The post-
raw stability of the UK routes sequences and the peak reached by
he 3N ones in March 2016 may reflect the dynamics of demand of
light services, which is complementary, and somewhat conditional, to
aining stadium entrance. The slight fall in subperiod B may be thus in-
uced by the need to boost sales in those flights with a larger remaining
apacity (Alderighi et al., 2015, 2016; Escobari, 2012; Williams, 2022).

Finally, as seats are sold over time, fewer fare classes remain avail-
ble; indeed in subperiod C we observe that the four prices converge
owards 𝑃 𝑚𝑎𝑥 in both treated and control flights (Alderighi et al.,

2015). Relatedly, the coefficient of variation (shown in the right panels
of Fig. 6) drops to its minimum value during the last month.

6.4. Robustness checks

As first robustness check, we replicate the entire econometric anal-
ysis using a different control group, the pre-tournament group. The
esults, reported in Appendix A.3, are qualitatively unchanged and

confirm, on a larger sample, the conclusions of our analysis. Finally,
we also run a placebo test which consists in changing the draw date
and checking whether a similar hike in fares as the ‘actual’ draw date

12 Note that such a distinction in subperiods applies to all four types of fares,
confirming that any fare adjustment is not only timed to the lowest fare class
(𝑃 𝑚𝑖𝑛), but to the entire fare sequence.
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Fig. 5. Predicted fares and coefficient of variation in December 2015 by subsamples.
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is observed. As expected, the test shows that December 12th, 2015 is
the only day to exhibit a large and statistically significant hike in fares.
For further details on this placebo test see Appendix A.4.

7. Conclusion

We investigated how a firm that sells multiple units of limited
capacity items sequentially responds to a demand shock. We focused
on the airline market, which represents a prominent example, but our
analysis can apply to other sectors of the economy in which firms
adopt revenue management techniques and set a sequence of prices
to sell their products (e.g., hotel, car rental, train, long-distance bus,
entertainment, sports industries).

In the theoretical model, the airline’s maximization problem is to
efine, at each point in time, a sequence, i.e., a vector, of fares whose

𝑖𝑡ℎ element is paired to the 𝑖𝑡ℎ seat in the order of sale. Like in Alderighi
et al. (2022), the optimal fare sequence is increasing in the order of
sale. We show that a demand shock that affects only the distribution
of the WTP only affects the level of the fares but not their dispersion;
9 
instead, an increase in the likelihood of a passenger showing up for
purchase (NUM) is expected to lead to a flattening of the fare sequence,
.e., fewer seats are allocated to lower fare classes.13

The empirical analysis tests the predictions of the theoretical model
using a natural experiment design that involves an exogenous positive
hock in demand. We have employed the airline fares of a sample of

flights serving France during the UEFA Euro 2016 soccer tournament.
The flights affected by the shock were the ones that, after the draw
evealed the identity of the teams playing in each French city, could be
sed by soccer supporters to reach the stadium and then return home.

The empirical evidence supports the main theoretical predictions
and indicates that the fare sequences of these flights shifted up and
became flatter, relative to unaffected flights. The first effect captures
the increase in the value that consumers assign to the transport service,
given the uniqueness of the sport event. The second effect points to
an increase in the number of potential buyers that the airline factored

13 The results would reverse in the case of a negative shock.
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Fig. 6. Predicted fares and coefficient of variation over the booking period.
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into their revised fare sequences. Most importantly, the evidence un-
quivocally supports the theoretical prediction that the fare sequence
onstitutes a primary revenue management tool used by easyJet, as the
equences were used in both treated and control flights, both before and
fter the shock. Piga and Alderighi (2024) discuss other strategic roles
layed by fare sequences, and how they relate to another assumption

of the theoretical model, that is, the impossibility to adjust fares instan-
taneously due to both technological limitations and/or organizational
rictions (Hortacsu et al., 2024). Indeed, we also find that the revision

of fare sequences in treated flights was not immediately carried out by
the airline.

These effects, however, are heterogeneous across routes and appear
tronger on the flights linking France with United Kingdom (UK) than
n the flights linking France with three of its neighboring countries

(3N). After the draw, the price sequence of the UK flights responded
elatively quickly, whereas the prices of the 3N flights were more slug-

gish to adjust and to show the same drop in price dispersion as the UK
flights. Linking these findings to our theoretical model, the UK flights

experience an increase in both WTP and NUM, with both effects, but the

10 
latter in particular, being weaker for the 3N flights. Because supporters
from continental Europe could use alternative means of transport (car,
train, long-distance bus) to reach the stadium, our findings suggest
that fare sequences encompass a pricing tool that is flexible enough
to manage flights with different degree of product substitutability.

We conclude by pointing out some possible limitations of the study
nd suggest reasons why they may not represent a serious concern.
irst, we show data based on only one airline, easyJet, raising doubts
s to whether the use of fare sequences is common practice in the
ndustry. Piga and Alderighi (2024) provide evidence that other such

important low-cost players as Ryanair in Europe and Southwest in the
USA also adopt a similar pricing approach. The evidence in Hortacsu
et al. (2024), although not directly focused on fare sequences, also
points to an equivalent mechanism being operational in traditional
carriers. Second, the analysis does not control for the degree of route
competition. Alderighi et al. (2022) address this specific point and find
that fare sequences are used independently of the route’s market struc-
ture. Hortacsu et al. (2024) also document that the pricing heuristic
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adopted by a large U.S. airline does not account for market character-
istics. Finally, the empirical analysis focuses on the impact of the shock
on prices but not on occupancy and realized load factors (Bilotkach
et al., 2015; Escobari, 2012). Although obviously relevant, we left this
aspect out and highlighted the role played by the fare sequences; its
nvestigation is left for future research.
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Appendix

A.1. Proof of Proposition 1

Part A. Starting from Eq. (2), we multiply both the left and the
right-hand of the equation by 𝛼 > 1, obtaining:

𝛼 𝑉 (𝑡, 𝑀) = 𝑞
(

𝑝𝑡,𝑚
) [

𝛼 𝑝𝑡,𝑚 + 𝛼 𝑉 (𝑡, 𝑀 − 1)] + (

1 − 𝑞
(

𝑝𝑡,𝑚
))

𝛼 𝑉 (𝑡 − 1, 𝑀) ,

(A.1)

After replacing �̂� = 𝛼 𝑝𝑡,𝑚 and 𝑉 = 𝛼 𝑉 , we have:

𝑉 (𝑡, 𝑀) = 𝑞 (�̂�∕𝛼)
[

�̂� + 𝑉 (𝑡, 𝑀 − 1)]

+ (1 − 𝑞 (�̂�∕𝛼))𝑉 (𝑡 − 1, 𝑀) , (A.2)

Note that from Eq. (1), 𝑞 can be written as:

𝑞 (�̂�∕𝛼) =
𝜑 (1 − 𝐹 (�̂�∕𝛼))
1 − 𝜑𝐹 (�̂�∕𝛼)

=
𝜑
(

1 − 𝐹 (�̂�)
)

1 − 𝜑𝐹 (�̂�)
= 𝑞(�̂�) ∈ [0, 1] , (A.3)

Substituting Eq. (A.3) in Eq. (A.2), we obtain:

𝑉 (𝑡, 𝑀) = 𝑞 (�̂�)
[

�̂� + 𝑉 (𝑡, 𝑀 − 1)] + (1 − 𝑞 (�̂�))𝑉 (𝑡 − 1, 𝑀) , (A.4)

Thus, �̂� in Eq. (A.4) is the solution for an analogous optimization
roblem for Eq. (2), where 𝑞 replaces 𝑞, say �̃�𝑡,𝑚. By construction, �̂� =
 𝑝𝑡,𝑚, and, therefore, optimal prices after the shock are: �̃�𝑡,𝑚 = �̂� = 𝛼 𝑝𝑡,𝑚.
ecause all equilibrium prices are shifted up by 𝛼, the same occurs for
he mean and the standard deviation. Consequently, the coefficient of
ariation, the ratio of these two measures, remains unchanged. This
oncludes the proof of Part A.

Part B. Recall that 𝜑 and �̃� are, respectively, the parameter value
ithout considering and after considering the positive shift in NUM,

with �̃� > 𝜑. In order to prove the result, we follow different steps.
Step 1: 𝑉 (𝑡, 𝑚) ≥ 𝑉 (𝑡, 𝑚). We first show that 𝑉 (𝑡, 𝑚) ≥ 𝑉 (𝑡, 𝑚) for

any 𝑡 ∈ {1,… , 𝑇 } and 𝑚 ∈ {1,… , 𝑀}. Let 𝑝𝑡,𝑚 be the optimal price
before the shock. Choose �̂�𝑡,𝑚 in such a way that 𝑞(�̂�𝑡,𝑚) = 𝑞(𝑝𝑡,𝑚) for
ny 𝑡 and 𝑚, i.e. �̂�𝑡,𝑚 = 𝑞−1(𝑞(𝑝𝑡,𝑚)). Because 𝑞 and 𝑞 are decreasing, and

𝑞 > 𝑞, it follows that �̂�𝑡,𝑚 > 𝑝𝑡,𝑚 for any 𝑡 and 𝑚.
Let 𝑉 (𝑡, 𝑚) be the value a firm receives by choosing the prices �̂�-

s after the shift. By construction, with this choice, a firm faces the
same pattern of sales that it obtains by charging the optimal prices 𝑝-s
before the shift, but earns higher revenue for each unit sold. As a result,
the value function satisfies 𝑉 (𝑡, 𝑚) < 𝑉 (𝑡, 𝑚) ≤ 𝑉 (𝑡, 𝑚), where the last
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inequality arises because 𝑉 is the value function, i.e., the value a firm
receives by choosing the optimal prices �̃�-s.

Although �̂�-s are unlikely to be optimal prices after the shock,
the previous discussion suggests the way in which prices should be
modified after the shock, i.e., by shifting prices upward. In the next
step, we prove that this conjecture is indeed true.

Step 2. �̃�1,1 ≥ 𝑝1,1. When 𝑡 = 1 and 𝑚 = 1, Eq. (2) has the following
first order condition:
𝑞
�̇�
+ 𝑝 = 0. (A.5)

Let:

𝑔 ∶=
𝑞
�̇�
+ 𝑝 = −(1 − 𝐹 )(1 − 𝜑𝐹 )

𝑓 (1 − 𝜑)
+ 𝑝. (A.6)

Moreover, note that 𝑔 and (𝑔 − 𝑝) are decreasing in 𝜑:
𝜕 𝑔
𝜕 𝜑 = 𝜕

𝜕 𝜑
(

𝑞
�̇�
+ 𝑝

)

=
𝜕(𝑔 − 𝑝)

𝜕 𝜑 = −(1 − 𝐹 )(1 − 𝜑𝐹 )
𝑓 (1 − 𝜑)

< 0.

From Eq. (A.5), since the first term is decreasing in 𝜑, it follows that
he optimal price 𝑝 is increasing in 𝜑, or �̃�1,1 ≥ 𝑝1,1.
Step 3. �̃�𝑡,1 ≥ 𝑝𝑡,1. For 𝑡 > 1 and 𝑚 = 1, the Bellman equation in (2)

is simply:

max
𝑝∈𝛩

{𝑞(𝑝)𝑝 + (1 − 𝑞(𝑝))𝑉 (𝑡 − 1, 1)} . (A.7)

The first order condition is: 𝑝+𝑞∕�̇�−𝑉 (𝑡− 1, 1) = 0. As the second (𝑞∕�̇�)
and third (−𝑉 ) terms are decreasing in 𝜑 (see, respectively Step 2 and
Step 1), it follows that optimal prices are increasing in 𝜑, i.e. �̃�𝑡,1 ≥ 𝑝𝑡,1
or all 𝑡.
Step 4. �̃�1,𝑚 ≥ 𝑝1,𝑚. Now, we consider the case where 𝑡 = 1 and

𝑚 ≥ 2. The first order condition for any 𝑚 is 𝑝𝑚+𝑞𝑚∕�̇�𝑚+𝑉 (1, 𝑚− 1) = 0,
𝑚 = 𝑝1,𝑚 and 𝑞𝑚 = 𝑞1,𝑚 = 𝑞(𝑝1,𝑚). Note that, in this case the profit

function can be written as:

𝜋𝑚 = 𝑞𝑚𝑝𝑚 + 𝑞𝑚𝑞𝑚−1𝑝𝑚−1 + 𝑞𝑚𝑞𝑚−1𝑞𝑚−2𝑝𝑚−2

+ ⋯ + 𝑞𝑚𝑞𝑚−1𝑞𝑚−2 … 𝑞1𝑝1, (A.8)

where 𝜋𝑚 is the profit having 𝑚 seats and 𝑡 = 1 periods. The first order
ondition is:
𝑞𝑚
�̇�𝑚

+ 𝑝𝑚 + 𝑞𝑚−1𝑝𝑚−1 + 𝑞𝑚𝑞𝑚−1𝑞𝑚−2𝑝𝑚−2

+ ⋯ + 𝑞𝑚𝑞𝑚−1𝑞𝑚−2 … 𝑞1𝑝1 = 0, (A.9)

where �̇�𝑚 = 𝜕 𝑞𝑚∕𝜕 𝑝𝑚. After some substitutions, we obtain:

𝑔𝑚 = 𝑞𝑚−1(𝑔𝑚−1 − 𝑝𝑚−1), (A.10)

where 𝑔𝑚 = 𝑞𝑚∕�̇�𝑚 + 𝑝𝑚, 𝑔0 = 𝑝0 = 𝑞0 = 0. We now use this equation
to compute the optimal values of 𝑝1,𝑚 recursively, starting from 1 and
ending in 𝑀 .

Note that for 𝑡 = 1 the optimal prices have a very simple graphical
olution (see: Fig. A.1). The 𝑔 curve has the following properties: it is
ncreasing in 𝑝, 𝑔(0) = −(𝑓 (0)(1 − 𝜑))−1, 𝑔(1) = 𝜃. The 𝑞(𝑔 − 𝑝) curve is

increasing, it equals −𝜑(𝑓 (0)(1 − 𝜑)2)−1 in 𝑝 = 0 and it is 0 in 𝑝 = 𝜃. To
derive the optimal price solutions graphically, we start from the case
in which 𝑡 = 1 (see: Fig. A.1, Panel a).

Using Eq. (A.10), 𝑝1 is given by the intersection of 𝑔 with the
orizontal axis, i.e., the solution of 𝑔(𝑝) = 0. To obtain 𝑝2, we move
ertically down from 𝑝1 to reach the curve 𝑞(𝑔−𝑝) and then horizontally
ack to the 𝑔 curve. Similarly, 𝑝3 can be found graphically by moving
ertically down from 𝑝2 and then moving horizontally back to 𝑞(𝑞 − 𝑝),
nd so on and so forth for the other prices until 𝑝𝑀 . Following this line
f reasoning, minimum equilibrium price 𝑝 is when 𝑔 = 𝑞(𝑔 − 𝑝).

To show that prices are increasing in 𝜑, we show that a marginal
rise in 𝜑 increases 𝑝1 and reduces the price difference (𝑝𝑚−1 − 𝑝𝑚 > 0)
or any 𝑚 ≥ 2. The first claim implies that �̃�1 ≥ 𝑝1 while the second one
mplies that �̃�𝑚 ≥ 𝑝𝑚). As 𝑔 becomes steeper for any 𝑝 and 𝑔(𝜃) does

not change, it immediately follows that 𝑝 is increasing in 𝜑 (see also
1
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Fig. A.1. Optimal price sequence for 𝑡 = 1 and 𝑚 ≥ 1.
Fig. A.1, Panel b).
Knowing that 𝑝1 is increasing in 𝜑, and noticing that the slope of

𝑔 between 𝑝𝑚−1 and 𝑝𝑚 is simply the ratio of the difference between
𝑔𝑚−1 and 𝑞𝑚−1(𝑔𝑚−1−𝑝𝑚−1) and the difference between 𝑝𝑚 and 𝑝𝑚−1 (see
Fig. A.1, panel c, where the slope comes from the ratio between 𝑎 and
𝑏). Consequently, 𝑝𝑚 − 𝑝𝑚−1 = (𝑔𝑚−1 − 𝑞𝑚−1(𝑔𝑚−1 − 𝑝𝑚−1))∕(𝜕 𝑔∕𝜕 𝑝).

A sufficient condition for having (weakly) decreasing price differ-
ences in 𝜑 is that:

𝜕
𝜕 𝜑

[

(𝑔 − 𝑞(𝑔 − 𝑝)) ⋅
(

𝜕 𝑔
𝜕 𝑝

)−1
]

≤ 0 (A.11)

The condition is, for example, satisfied by the uniform distribution,
indeed it is:
2𝑝2 − 3𝑝 + 1
2(1 − 𝜑𝑝)2

≤ 0, (A.12)

which is satisfied for any 𝑝 ∈ [𝑝, 𝑝] = [1∕2, 1].
Step 5. �̃�𝑡,𝑚 ≥ 𝑝𝑡,𝑚. Now, we consider the general case where 𝑚 ≥ 2

and 𝑡 ≥ 1. Note that, after generalizing the first order conditions in
Eq. (A.9) we obtain the analogous of Eq. (A.10):

𝑔𝑡,𝑚 = 𝑞𝑡,𝑚−1(𝑔𝑡,𝑚−1 − 𝑝𝑡,𝑚−1) + [𝑉 (𝑡 − 1, 𝑚) − 𝑉 (𝑡 − 1, 𝑚 − 1)] , (A.13)

This equation differs from the previous one by an extra-term 𝛥𝑉 =
𝑉 (𝑡 − 1, 𝑚) − 𝑉 (𝑡 − 1, 𝑚 − 1). From Step 1, we know that 𝑉 (𝑡 − 1, 𝑚) and
𝑉 (𝑡 − 1, 𝑚 − 1) are positive and increasing in 𝜑. Moreover, the benefit
obtained by a positive shift in 𝜑 increases the value of each seat, and,
consequently, the impact is higher where the number of seat is higher,
i.e., 𝜕 𝑉 (𝑡 − 1, 𝑚)∕𝜕 𝜑 ≥ 𝜕 𝑉 (𝑡 − 1, 𝑚 − 1)∕𝜕 𝜑. Using a similar argument
employed in Step 4, we can compute the price difference that is now:
𝑝𝑚 − 𝑝𝑚−1 = (𝑔𝑚−1 − 𝑞𝑚−1(𝑔𝑚−1 − 𝑝𝑚−1 − 𝛥𝑉 ))∕(𝜕 𝑔∕𝜕 𝑝). Thus, the extra-
term 𝛥𝑉 contributes to an additional reduction in price differences as
𝜑 increases, implying that �̃�𝑡,𝑚 ≥ 𝑝𝑡,𝑚. This concludes the proof of part
B.

Part C. We now prove that when 𝜑 and/or 𝛽 are sufficiently large,
�̃�𝑡,1∕𝑝𝑡,1 < �̃�𝑡,𝑚∕𝑝𝑡,𝑚 and 𝐶 𝑉 𝑡,𝑚 < 𝐶 𝑉𝑡,𝑚.

To do this, it is sufficient to show that when 𝜑 → 1, 𝑝1,𝑚 → 𝜃 and
𝑝𝑡,𝑚 → 𝜃 and, therefore, 𝐶 𝑉𝑡,𝑚 → 0. Using Eq. (2) and taking the first
derivative of the internal problem, we obtain:
̇ (𝑝)[𝑝 + 𝑉 (𝑡, 𝑚 − 1) − 𝑉 (𝑡 − 1, 𝑚)] + 𝑞(𝑝) (A.14)
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Now, when 𝜑 → 1, 𝑞 → 1, �̇� → 0, and [𝑝+ 𝑉 (𝑡, 𝑚− 1) − 𝑉 (𝑡− 1, 𝑚)] < ∞,
the first derivative is always positive. Thus, for any 𝑡 and 𝑚, the optimal
prices are �̃�𝑡,1 = �̃�𝑡,𝑚 = 𝜃 and 𝐶 𝑉 𝑡,𝑚 = 0. Moreover, we know that for
any 𝜑 < 1, 𝑡 ≤ 𝑇 , 𝑚 > 𝑛, 𝑝𝑡,𝑚 < 𝑝𝑡,𝑛 and 𝐶 𝑉 > 0. Thus, we have proved
the result for any 𝜑 < 1 and �̃� = 1. By continuity of the value function
and optimal prices, for any 𝑡 and 𝑚, there must exist a set of parameters
𝜑 and 𝛽 such that for any �̃� ∈ (𝜑, 1), we have: �̃�𝑡,1∕𝑝𝑡,1 < �̃�𝑡,𝑚∕𝑝𝑡,𝑚 and
𝐶 𝑉 𝑡,𝑚 < 𝐶 𝑉𝑡,𝑚. This concludes the proof of part C.

A.2. Parallel trends

In this subsection we use non-parametric tools to corroborate the ev-
idence in favor of the parallel trends between the control and treatment
groups during in the pre-draw period.

Fig. A.2 represents the median-spline of the mean by days to de-
parture of four dependent variables used in the regression analysis: the
lowest available fare (𝑃 𝑚𝑖𝑛), the twenty-fifth percentile of the fare se-
quence (𝑃 𝑐25), the seventy-fifth percentile of the fare sequence (𝑃 𝑐75),
and the highest observable fare (𝑃 𝑚𝑎𝑥). The average is computed
within each date of query and for different groups of flights.

As the figure shows, prior to the draw the pattern of the treated
flights (solid curves) and the corresponding control flights (dashed
curve) tend to be similar and, in some instances, even overlap. This
behavior is observed in all the four panels, i.e., for all the four fare
variables used in the regressions, and may support the idea that in ab-
sence of the shock the fares of the treated flights would have probably
behaved in the same way as the fares of the control flights. Under this
argument we claim that the difference between the treatment and the
control group that we observe in the post-draw period is due to the
draw, or, using a more general term, to the demand shock (see Fig. A.2).

A.3. Pre-tournament flights as control group

Figs. A.3, A.4, and A.5 are obtained replicating the entire econo-
metric analysis of the paper using the pre-tournament flights as control
group. Therefore, they represent the companions of Figs. 4, 5, and 6,
respectively.
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Fig. A.2. Median-spline of the mean fare over the booking period.
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Noticeably, Figs. A.3, A.4, and A.5 lead to the same conclusions
hown by the figures in the main body of this article thereby confirming
ur findings using an alternative control group.

A.4. Placebo test

To check the robustness of our findings further, we conduct the
following placebo test. We set a hypothetical draw date which takes the
place of the real draw date of December 12th, 2015 and then estimate
the following equation:

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑃 𝑜𝑠𝑡𝑡 + 𝛽2𝑇 𝑟𝑒𝑎𝑡𝑒𝑑𝑖 + 𝛽3(𝑃 𝑜𝑠𝑡𝑡 ⋅ 𝑇 𝑟𝑒𝑎𝑡𝑒𝑑𝑖) + 𝜀𝑖𝑡 (A.15)

on an even sub-sample which includes up to 30 days before and 30 days
fter the hypothetical draw date denoted by the dummy variable 𝑃 𝑜𝑠𝑡.
e use 𝑃 𝑚𝑖𝑛 as dependent variable. We start by selecting February 1th,

016 as the first hypothetical draw date and then repeat the process
hifting the hypothetical draw date by one day onward until May 1th,

Fig. A.6 displays the estimated 𝛽
016. We run 82 regressions in total. 3

13 
coefficient of Eq. (A.15) with its 95% confidence interval.
For hypothetical draw dates prior to mid March we observe in-

tances of positive 𝛽3; however the coefficient is statistically significant
rom zero in few cases and, above all, its magnitude is no more
han 11, while the same estimation using the real draw date yields
 statistically significant 𝛽3 coefficient equal to almost 74. When the
ypothetical draw date is set from mid March onward, the 𝛽3 coefficient
s statistically significant but negative, which is inconsistent with a
ositive demand shock for treated flights.

Both findings suggest that all the fares of treated flights reacted to a
positive demand shock induced by the draw on December 12th, 2015.

Data availability

Data will be made available on request.



C.A. Piga et al.

Fig. A.3. Predicted fares and coefficient of variation in December 2015 with pre-tournament control group.

Fig. A.4. Predicted fares and coefficient of variation in December 2015 by subsamples with pre-tournament control group.
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Fig. A.5. Predicted fares and coefficient of variation over the booking period with pre-tournament control group.
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Fig. A.6. Placebo test: 𝛽3 from Eq. (A.15) with different draw dates.
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