In the paper, we analyze the necessary efficiency conditions for scalar, vectorial and vector fractional variational problems using curvilinear integrals as objectives and we establish sufficient conditions of efficiency to the above variational problems. The efficiency sufficient conditions use of notions of the geodesic invex set and of (strictly, monotonic) (𝜌 , b)-geodesic quasiinvex functions.

Efficiency for Vector Variational Quotient Problems with Curvilinear Integrals on Riemannian Manifolds via Geodesic Quasiinvexity

Ciano, Tiziana
Methodology
;
2020-01-01

Abstract

In the paper, we analyze the necessary efficiency conditions for scalar, vectorial and vector fractional variational problems using curvilinear integrals as objectives and we establish sufficient conditions of efficiency to the above variational problems. The efficiency sufficient conditions use of notions of the geodesic invex set and of (strictly, monotonic) (𝜌 , b)-geodesic quasiinvex functions.
2020
: curvilinear integrals; geodesic quasiinvexity; Riemannian manifolds; efficient solution
File in questo prodotto:
File Dimensione Formato  
mathematics-08-01054-v2 (1).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 302.73 kB
Formato Adobe PDF
302.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14087/11602
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact